Bundles with even-dimensional spherical space form as fibers and fiberwise quarter pinched Riemannian metrics
HTML articles powered by AMS MathViewer
- by Diego Corro, Karla Garcia, Martin Günther and Jan-Bernhard Kordaß
- Proc. Amer. Math. Soc. 149 (2021), 5407-5416
- DOI: https://doi.org/10.1090/proc/15649
- Published electronically: September 28, 2021
- PDF | Request permission
Abstract:
Let $E$ be a smooth bundle with fiber an $n$-dimensional real projective space $\mathbb {R}P^n$. We show that, if every fiber carries a positively curved pointwise strongly $1/4$-pinched Riemannian metric that varies continuously with respect to its base point, then the structure group of the bundle reduces to the isometry group of the standard round metric on $\mathbb {R}P^n$.References
- Ben Andrews and Christopher Hopper, The Ricci flow in Riemannian geometry, Lecture Notes in Mathematics, vol. 2011, Springer, Heidelberg, 2011. A complete proof of the differentiable 1/4-pinching sphere theorem. MR 2760593, DOI 10.1007/978-3-642-16286-2
- Richard Bamler and Bruce Kleiner, Ricci flow and diffeomorphism groups of 3-manifolds, arXiv:1712.06197 [math.DG], 2017.
- Richard Bamler and Bruce Kleiner, Ricci flow and contractibility of spaces of metrics, arXiv:1909.08710 [math.DG], 2019.
- James C. Becker and Daniel Henry Gottlieb, Coverings of fibrations, Compositio Math. 26 (1973), 119–128. MR 322867
- Simon Brendle, Ricci flow and the sphere theorem, Graduate Studies in Mathematics, vol. 111, American Mathematical Society, Providence, RI, 2010. MR 2583938, DOI 10.1090/gsm/111
- Simon Brendle and Richard Schoen, Manifolds with $1/4$-pinched curvature are space forms, J. Amer. Math. Soc. 22 (2009), no. 1, 287–307. MR 2449060, DOI 10.1090/S0894-0347-08-00613-9
- Diego Corro and Jan-Bernhard Kordaß, Short survey on the existence of slices for the space of riemannian metrics, arXiv:1904.07031 [math.DG], 2019.
- G. de Rham, Complexes à automorphismes et homéomorphie différentiable, Ann. Inst. Fourier (Grenoble) 2 (1950), 51–67 (1951) (French). MR 43468, DOI 10.5802/aif.19
- Manfredo Perdigão do Carmo, Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty. MR 1138207, DOI 10.1007/978-1-4757-2201-7
- Thomas Farrell, Zhou Gang, Dan Knopf, and Pedro Ontaneda, Sphere bundles with $1/4$-pinched fiberwise metrics, Trans. Amer. Math. Soc. 369 (2017), no. 9, 6613–6630. MR 3660235, DOI 10.1090/tran/6993
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Allen E. Hatcher, A proof of the Smale conjecture, $\textrm {Diff}(S^{3})\simeq \textrm {O}(4)$, Ann. of Math. (2) 117 (1983), no. 3, 553–607. MR 701256, DOI 10.2307/2007035
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994. Corrected reprint of the 1976 original. MR 1336822
- Andreas Kriegl and Peter W. Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs, vol. 53, American Mathematical Society, Providence, RI, 1997. MR 1471480, DOI 10.1090/surv/053
- Jonathan Rosenberg and Stephan Stolz, Metrics of positive scalar curvature and connections with surgery, Surveys on surgery theory, Vol. 2, Ann. of Math. Stud., vol. 149, Princeton Univ. Press, Princeton, NJ, 2001, pp. 353–386. MR 1818778
- Stephen Smale, Diffeomorphisms of the $2$-sphere, Proc. Amer. Math. Soc. 10 (1959), 621–626. MR 112149, DOI 10.1090/S0002-9939-1959-0112149-8
- Wilderich Tuschmann and David J. Wraith, Moduli spaces of Riemannian metrics, Oberwolfach Seminars, vol. 46, Birkhäuser Verlag, Basel, 2015. Second corrected printing. MR 3445334, DOI 10.1007/978-3-0348-0948-1
Bibliographic Information
- Diego Corro
- Affiliation: Institut für Algebra und Geometrie, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
- Address at time of publication: Instituto de Matemáticas, sede Oaxaca, Universidad Nacional Autónoma de México (UNAM), Mexico
- MR Author ID: 1379059
- ORCID: 0000-0002-1114-0071
- Email: diego.corro.math@gmail.com
- Karla Garcia
- Affiliation: Institut für Algebra und Geometrie, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
- Address at time of publication: Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Mexico
- Email: ohmu@ciencias.unam.mx
- Martin Günther
- Affiliation: Institut für Algebra und Geometrie, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany
- Email: martin.guenther@kit.edu
- Jan-Bernhard Kordaß
- Affiliation: Département de Mathématiques, Université de Fribourg, Fribourg, Switzerland
- ORCID: 0000-0003-2207-8178
- Email: jb@kordass.eu
- Received by editor(s): April 23, 2020
- Received by editor(s) in revised form: April 6, 2021
- Published electronically: September 28, 2021
- Additional Notes: The authors were supported by the DFG (281869850, RTG 2229 “Asymptotic Invariants and Limits of Groups and Spaces”). The first author was also supported by a DGAPA Postdoctoral Fellowship of the Institute of Mathematics, UNAM
- Communicated by: Guofang Wei
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 5407-5416
- MSC (2020): Primary 57R22, 53C10
- DOI: https://doi.org/10.1090/proc/15649
- MathSciNet review: 4327442