The operator norm on weighted discrete semigroup algebras $\ell ^1(S, \omega )$
HTML articles powered by AMS MathViewer
- by H. V. Dedania and J. G. Patel
- Proc. Amer. Math. Soc. 149 (2021), 5313-5319
- DOI: https://doi.org/10.1090/proc/15655
- Published electronically: September 24, 2021
- PDF | Request permission
Abstract:
Let $\omega$ be a weight on a right cancellative semigroup $S$. Let $\|\cdot \|_{\omega }$ be the weighted norm on the weighted discrete semigroup algebra $\ell ^1(S, \omega )$. In this paper, we prove that the weight $\omega$ satisfies F-property if and only if the operator norm $\| \cdot \|_{\omega op}$ of $\| \cdot \|_{\omega }$ is exactly equal to another weighted norm $\| \cdot \|_{\widetilde {\omega }_1}$. Though its proof is elementary, the result is unexpectedly surprising. In particular, the operator norm $\| \cdot \|_{1 op}$ is same as the $\ell ^1$- norm $\| \cdot \|_1$ on $\ell ^1(S)$. Moreover, various examples are discussed to understand the relation among $\| \cdot \|_{\omega op}$, $\| \cdot \|_{\omega }$, and $\ell ^1(S, \omega )$.References
- S. J. Bhatt and H. V. Dedania, Uniqueness of the uniform norm and adjoining identity in Banach algebras, Proc. Indian Acad. Sci. Math. Sci. 105 (1995), no.ย 4, 405โ409. MR 1409578, DOI 10.1007/BF02836876
- S. J. Bhatt, P. A. Dabhi, and H. V. Dedania, Multipliers of weighted semigroups and associated Beurling Banach algebras, Proc. Indian Acad. Sci. Math. Sci. 121 (2011), no.ย 4, 417โ433. MR 2934348, DOI 10.1007/s12044-011-0048-1
- H. G. Dales, Banach algebras and automatic continuity, London Mathematical Society Monographs. New Series, vol. 24, The Clarendon Press, Oxford University Press, New York, 2000. Oxford Science Publications. MR 1816726
- H. G. Dales and H. V. Dedania, Weighted convolution algebras on subsemigroups of the real line, Dissertationes Math. 459 (2009), 60. MR 2477218, DOI 10.4064/dm459-0-1
- Edwin Hewitt and Herbert S. Zuckerman, The $l_1$-algebra of a commutative semigroup, Trans. Amer. Math. Soc. 83 (1956), 70โ97. MR 81908, DOI 10.1090/S0002-9947-1956-0081908-4
Bibliographic Information
- H. V. Dedania
- Affiliation: Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
- MR Author ID: 338194
- ORCID: 0000-0002-6353-6924
- Email: hvdedania@gmail.com
- J. G. Patel
- Affiliation: Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India
- Email: jatinprofessor39@gmail.com
- Received by editor(s): April 9, 2021
- Published electronically: September 24, 2021
- Additional Notes: The second author is thankful to the University Grants Commission (UGC), New Delhi, for providing Junior Research Fellowship
The second author is the correpsonding author - Communicated by: Ariel Barton
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 5313-5319
- MSC (2020): Primary 46H05; Secondary 43A20
- DOI: https://doi.org/10.1090/proc/15655
- MathSciNet review: 4327434