On the distribution of the Rudin-Shapiro function for finite fields
HTML articles powered by AMS MathViewer
- by Cécile Dartyge, László Mérai and Arne Winterhof
- Proc. Amer. Math. Soc. 149 (2021), 5013-5023
- DOI: https://doi.org/10.1090/proc/15668
- Published electronically: September 9, 2021
- PDF | Request permission
Abstract:
Let $q=p^r$ be the power of a prime $p$ and $(\beta _1,\ldots ,\beta _r)$ be an ordered basis of $\mathbb {F}_q$ over $\mathbb {F}_p$. For \begin{equation*} \xi =\sum _{j=1}^r x_j\beta _j\in \mathbb {F}_q \quad \text {with digits }x_j\in \mathbb {F}_p, \end{equation*} we define the Rudin-Shapiro function $R$ on $\mathbb {F}_q$ by \begin{equation*} R(\xi )=\sum _{i=1}^{r-1} x_ix_{i+1}, \quad \xi \in \mathbb {F}_q. \end{equation*} For a non-constant polynomial $f(X)\in \mathbb {F}_q[X]$ and $c\in \mathbb {F}_p$ we study the number of solutions $\xi \in \mathbb {F}_q$ of $R(f(\xi ))=c$. If the degree $d$ of $f(X)$ is fixed, $r\ge 6$ and $p\rightarrow \infty$, the number of solutions is asymptotically $p^{r-1}$ for any $c$. The proof is based on the Hooley-Katz Theorem.References
- Jean Bourgain, Prescribing the binary digits of primes, Israel J. Math. 194 (2013), no. 2, 935–955. MR 3047097, DOI 10.1007/s11856-012-0104-2
- Jean Bourgain, Prescribing the binary digits of primes, II, Israel J. Math. 206 (2013), no. 1, 165–182.
- David A. Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, 4th ed., Undergraduate Texts in Mathematics, Springer, Cham, 2015. An introduction to computational algebraic geometry and commutative algebra. MR 3330490, DOI 10.1007/978-3-319-16721-3
- Cécile Dartyge, Christian Mauduit, and András Sárközy, Polynomial values and generators with missing digits in finite fields, Funct. Approx. Comment. Math. 52 (2015), no. 1, 65–74. MR 3326124, DOI 10.7169/facm/2015.52.1.5
- Cécile Dartyge and András Sárközy, The sum of digits function in finite fields, Proc. Amer. Math. Soc. 141 (2013), no. 12, 4119–4124. MR 3105855, DOI 10.1090/S0002-9939-2013-11801-0
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258, DOI 10.1007/BF02684373
- Rainer Dietmann, Christian Elsholtz, and Igor E. Shparlinski, Prescribing the binary digits of squarefree numbers and quadratic residues, Trans. Amer. Math. Soc. 369 (2017), no. 12, 8369–8388. MR 3710628, DOI 10.1090/tran/6903
- Michael Drmota, Christian Mauduit, and Joël Rivat, Normality along squares, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 2, 507–548. MR 3896209, DOI 10.4171/JEMS/843
- M. R. Gabdullin, On the squares in the set of elements of a finite field with constraints on the coefficients of its basis expansion, Mat. Zametki 100 (2016), no. 6, 807–824 (Russian, with Russian summary); English transl., Math. Notes 101 (2017), no. 1-2, 234–249. MR 3588906, DOI 10.4213/mzm11091
- C. Hooley, On the number of points on a complete intersection over a finite field, J. Number Theory 38 (1991), no. 3, 338–358. With an appendix by Nicholas M. Katz. MR 1114483, DOI 10.1016/0022-314X(91)90023-5
- Rudolf Lidl and Harald Niederreiter, Finite fields, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997. With a foreword by P. M. Cohn. MR 1429394
- Sam Mattheus, Trace of products in finite fields from a combinatorial point of view, SIAM J. Discrete Math. 33 (2019), no. 4, 2126–2139. MR 4025769, DOI 10.1137/19M1279903
- Christian Mauduit and Joël Rivat, La somme des chiffres des carrés, Acta Math. 203 (2009), no. 1, 107–148 (French). MR 2545827, DOI 10.1007/s11511-009-0040-0
- Christian Mauduit and Joël Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math. (2) 171 (2010), no. 3, 1591–1646 (French, with English and French summaries). MR 2680394, DOI 10.4007/annals.2010.171.1591
- James Maynard, Primes with restricted digits, Invent. Math. 217 (2019), no. 1, 127–218. MR 3958793, DOI 10.1007/s00222-019-00865-6
- Gary L. Mullen (ed.), Handbook of finite fields, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2013. MR 3087321, DOI 10.1201/b15006
- Clemens Müllner, The Rudin-Shapiro sequence and similar sequences are normal along squares, Canad. J. Math. 70 (2018), no. 5, 1096–1129. MR 3831916, DOI 10.4153/CJM-2017-053-1
- Sam Porritt, Irreducible polynomials over a finite field with restricted coefficients, Canad. Math. Bull. 62 (2019), no. 2, 429–439. MR 3952530, DOI 10.4153/cmb-2018-027-x
- Zhimin Sun and Arne Winterhof, On the maximum order complexity of subsequences of the Thue-Morse and Rudin-Shapiro sequence along squares, Int. J. Comput. Math. Comput. Syst. Theory 4 (2019), no. 1, 30–36. MR 3924800, DOI 10.1080/23799927.2019.1566275
- Cathy Swaenepoel, On the sum of digits of special sequences in finite fields, Monatsh. Math. 187 (2018), no. 4, 705–728. MR 3861325, DOI 10.1007/s00605-017-1148-5
- Cathy Swaenepoel, Prescribing digits in finite fields, J. Number Theory 189 (2018), 97–114. MR 3788642, DOI 10.1016/j.jnt.2017.11.012
- Cathy Swaenepoel, Trace of products in finite fields, Finite Fields Appl. 51 (2018), 93–129. MR 3781398, DOI 10.1016/j.ffa.2018.01.005
- Cathy Swaenepoel, Prime numbers with a positive proportion of preassigned digits, Proc. Lond. Math. Soc. (3) 121 (2020), no. 1, 83–151. MR 4048736, DOI 10.1112/plms.12314
Bibliographic Information
- Cécile Dartyge
- Affiliation: Institut Élie Cartan, Université de Lorraine, BP 239, 54506 Vandœuvre Cedex, France
- Email: cecile.dartyge@univ-lorraine.fr
- László Mérai
- Affiliation: Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Straße 69, A-4040 Linz, Austria
- Email: laszlo.merai@oeaw.ac.at
- Arne Winterhof
- Affiliation: Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Straße 69, A-4040 Linz, Austria
- MR Author ID: 630910
- ORCID: 0000-0002-3863-1110
- Email: arne.winterhof@oeaw.ac.at
- Received by editor(s): June 4, 2020
- Received by editor(s) in revised form: December 3, 2020, and January 21, 2021
- Published electronically: September 9, 2021
- Additional Notes: The second and third authors were partially supported by the Austrian Science Fund FWF, Projects P 31762 and P 30405, respectively.
- Communicated by: Rachel Pries
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 149 (2021), 5013-5023
- MSC (2020): Primary 11A63, 11T23, 11T30
- DOI: https://doi.org/10.1090/proc/15668
- MathSciNet review: 4327411
Dedicated: In memory of Christian Mauduit