Every $BT_1$ group scheme appears in a Jacobian
HTML articles powered by AMS MathViewer
- by Rachel Pries and Douglas Ulmer PDF
- Proc. Amer. Math. Soc. 150 (2022), 525-537 Request permission
Abstract:
Let $p$ be a prime number and let $k$ be an algebraically closed field of characteristic $p$. A $BT_1$ group scheme over $k$ is a finite commutative group scheme which arises as the kernel of $p$ on a $p$-divisible (BarsottiâTate) group. Our main result is that every $BT_1$ group scheme over $k$ occurs as a direct factor of the $p$-torsion group scheme of the Jacobian of an explicit curve defined over ${\mathbb F}_p$. We also treat a variant with polarizations. Our main tools are the Kraft classification of $BT_1$ group schemes, a theorem of Oda, and a combinatorial description of the de Rham cohomology of Fermat curves.References
- Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673, DOI 10.1007/978-3-662-06307-1
- S. Devalaparkur and J. Halliday, The DieudonnĂ© modules and EkedahlâOort types of Jacobians of hyperelliptic curves in odd characteristic, Preprint, arXiv:1712.04921, 2017.
- Neil Dummigan, The determinants of certain Mordell-Weil lattices, Amer. J. Math. 117 (1995), no. 6, 1409â1429. MR 1363073, DOI 10.2307/2375024
- Arsen Elkin and Rachel Pries, Ekedahl-Oort strata of hyperelliptic curves in characteristic 2, Algebra Number Theory 7 (2013), no. 3, 507â532. MR 3095219, DOI 10.2140/ant.2013.7.507
- Jean-Marc Fontaine, Groupes $p$-divisibles sur les corps locaux, Astérisque, No. 47-48, Société Mathématique de France, Paris, 1977 (French). MR 0498610
- Hanspeter Kraft, Kommutative algebraische Gruppen und Ringe, Lecture Notes in Mathematics, Vol. 455, Springer-Verlag, Berlin-New York, 1975 (German). MR 0393051
- W. Li, E. Mantovan, R. Pries, and Y. Tang, Newton polygon stratification of the Torelli locus in PEL-type Shimura varieties, Preprint, to appear in Int. Math. Res. Not. IMRN arXiv:1811.00604, 2018.
- Ben Moonen, Serre-Tate theory for moduli spaces of PEL type, Ann. Sci. Ăcole Norm. Sup. (4) 37 (2004), no. 2, 223â269 (English, with English and French summaries). MR 2061781, DOI 10.1016/j.ansens.2003.04.004
- Ben Moonen, Computing discrete invariants of varieties in positive characteristic I: EkedahlâOort types of curves, Preprint, 2020.
- Tadao Oda, The first de Rham cohomology group and DieudonnĂ© modules, Ann. Sci. Ăcole Norm. Sup. (4) 2 (1969), 63â135. MR 241435
- Frans Oort, A stratification of a moduli space of abelian varieties, Moduli of abelian varieties (Texel Island, 1999) Progr. Math., vol. 195, BirkhĂ€user, Basel, 2001, pp. 345â416. MR 1827027, DOI 10.1007/978-3-0348-8303-0_{1}3
- Rachel Pries and Douglas Ulmer, On $BT_1$ group schemes and Fermat curves, New York J. Math. 27 (2021), 705â739. MR 4250272
- DorĂ© Subrao, The $p$-rank of Artin-Schreier curves, Manuscripta Math. 16 (1975), no. 2, 169â193. MR 376693, DOI 10.1007/BF01181639
- Douglas Ulmer, Explicit points on the Legendre curve III, Algebra Number Theory 8 (2014), no. 10, 2471â2522. MR 3298546, DOI 10.2140/ant.2014.8.2471
- AndrĂ© Weil, Sur les pĂ©riodes des intĂ©grales abĂ©liennes, Comm. Pure Appl. Math. 29 (1976), no. 6, 813â819 (French). MR 422164, DOI 10.1002/cpa.3160290620
- Noriko Yui, On the Jacobian variety of the Fermat curve, J. Algebra 65 (1980), no. 1, 1â35. MR 578793, DOI 10.1016/0021-8693(80)90236-7
Additional Information
- Rachel Pries
- Affiliation: Department of Mathematics, Colorado State University, Fort Collins, Colorado 80523
- MR Author ID: 665775
- Email: pries@math.colostate.edu
- Douglas Ulmer
- Affiliation: Department of Mathematics, University of Arizona, Tucson, Arizona 85721
- MR Author ID: 175900
- ORCID: 0000-0003-1529-4390
- Email: ulmer@math.arizona.edu
- Received by editor(s): January 21, 2021
- Received by editor(s) in revised form: May 9, 2021
- Published electronically: November 4, 2021
- Additional Notes: The first author was partially supported by NSF grant DMS-1901819.
The second author was partially supported by Simons Foundation grants 359573 and 713699. - Communicated by: Matt A. Papanikolas
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 525-537
- MSC (2020): Primary 11D41, 11G20, 14F40, 14H40, 14L15; Secondary 11G10, 14G17, 14K15, 14H10
- DOI: https://doi.org/10.1090/proc/15681
- MathSciNet review: 4356165