Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Regular evolution algebras are universally finite
HTML articles powered by AMS MathViewer

by Cristina Costoya, Panagiote Ligouras, Alicia Tocino and Antonio Viruel PDF
Proc. Amer. Math. Soc. 150 (2022), 919-925 Request permission

Abstract:

In this paper we show that evolution algebras over any given field $\Bbbk$ are universally finite. In other words, given any finite group $G$, there exist infinitely many regular evolution algebras $X$ such that $Aut(X)\cong G$. The proof is built upon the construction of a covariant faithful functor from the category of finite simple (non oriented) graphs to the category of (finite dimensional) regular evolution algebras. Finally, we show that any constant finite algebraic affine group scheme $\mathbf {G}$ over $\Bbbk$ is isomorphic to the algebraic affine group scheme of automorphisms of a regular evolution algebra.
References
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2020): 05C25, 17A36, 17D99
  • Retrieve articles in all journals with MSC (2020): 05C25, 17A36, 17D99
Additional Information
  • Cristina Costoya
  • Affiliation: CITIC Research Center, Ciencias de la Computación y Tecnologías de la Información, Universidade da Coruña, 15071-A Coruña, Spain
  • MR Author ID: 703206
  • Email: cristina.costoya@udc.es
  • Panagiote Ligouras
  • Affiliation: I.I.S.S. “Da Vinci-Agherbino” - Via Repubblica, 36/H, 70015 Noci BA, Italy
  • Email: ligouras@alice.it
  • Alicia Tocino
  • Affiliation: Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071 Málaga, Spain
  • MR Author ID: 1145159
  • ORCID: 0000-0001-9045-939X
  • Email: alicia.tocino@uma.es
  • Antonio Viruel
  • Affiliation: Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071 Málaga, Spain
  • MR Author ID: 630145
  • ORCID: 0000-0002-1605-5845
  • Email: viruel@uma.es
  • Received by editor(s): February 8, 2020
  • Received by editor(s) in revised form: January 31, 2021
  • Published electronically: December 14, 2021
  • Additional Notes: The first author was partially supported by Ministerio de Economía y Competitividad (Spain), grant MTM2016-79661-P
    The third author was partially supported by by Ministerio de Economía y Competitividad (Spain) grant MTM2016-76327-C3-1-P
    The fourth author was partially supported by by Ministerio de Economía y Competitividad (Spain) grant MTM2016-78647-P
  • Communicated by: Jerzy Weyman
  • © Copyright 2021 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 150 (2022), 919-925
  • MSC (2020): Primary 05C25, 17A36, 17D99
  • DOI: https://doi.org/10.1090/proc/15648
  • MathSciNet review: 4375692