Rough singular integrals and maximal operator with radial-angular integrability
HTML articles powered by AMS MathViewer
- by Ronghui Liu and Huoxiong Wu
- Proc. Amer. Math. Soc. 150 (2022), 1141-1151
- DOI: https://doi.org/10.1090/proc/15705
- Published electronically: December 22, 2021
- PDF | Request permission
Abstract:
In this paper, we study the rough singular integral operator \begin{equation*} T_\Omega f(x)=\text {p.v.}\int _{\mathbb {R}^n}f(x-y)\frac {\Omega (y’)}{|y|^n}dy, \end{equation*} and the corresponding maximal singular integral operator \begin{equation*} T^*_\Omega f(x)=\sup _{\varepsilon >0}\Big |\int _{|y|\geq \varepsilon }f(x-y)\frac {\Omega (y’)}{|y|^n}dy\Big |, \end{equation*} where the kernel $\Omega \in H^1(\mathrm {S}^{n-1})$ has zero mean value and $n\geq 2$. We prove that $T_\Omega$ and $T^*_\Omega$ are bounded on the mixed radial-angular spaces $L_{|x|}^pL_{\theta }^{\tilde {p}}(\mathbb {R}^n)$ for some suitable indexes $1<p, \tilde {p}<\infty$. The corresponding vector-valued versions are also established.References
- A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. MR 52553, DOI 10.1007/BF02392130
- A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309. MR 84633, DOI 10.2307/2372517
- Ronald R. Coifman and Guido Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), no. 4, 569–645. MR 447954, DOI 10.1090/S0002-9904-1977-14325-5
- L. Colzani, Hardy spaces on sphere, Ph.D. Thesis, Washington University, St. Louis, 1982.
- William C. Connett, Singular integrals near $L^{1}$, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 163–165. MR 545253
- Antonio Córdoba, Singular integrals, maximal functions and Fourier restriction to spheres: the disk multiplier revisited, Adv. Math. 290 (2016), 208–235. MR 3451922, DOI 10.1016/j.aim.2015.11.039
- Piero D’Ancona and Renato Luca’, Stein-Weiss and Caffarelli-Kohn-Nirenberg inequalities with angular integrability, J. Math. Anal. Appl. 388 (2012), no. 2, 1061–1079. MR 2869807, DOI 10.1016/j.jmaa.2011.10.051
- Piero D’Ancona and Renato Lucà, On the regularity set and angular integrability for the Navier-Stokes equation, Arch. Ration. Mech. Anal. 221 (2016), no. 3, 1255–1284. MR 3509001, DOI 10.1007/s00205-016-0982-2
- Javier Duoandikoetxea and José L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates, Invent. Math. 84 (1986), no. 3, 541–561. MR 837527, DOI 10.1007/BF01388746
- Javier Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, vol. 29, American Mathematical Society, Providence, RI, 2001. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. MR 1800316, DOI 10.1090/gsm/029
- Dashan Fan and Yibiao Pan, Singular integral operators with rough kernels supported by subvarieties, Amer. J. Math. 119 (1997), no. 4, 799–839. MR 1465070, DOI 10.1353/ajm.1997.0024
- Loukas Grafakos and Atanas Stefanov, $L^p$ bounds for singular integrals and maximal singular integrals with rough kernels, Indiana Univ. Math. J. 47 (1998), no. 2, 455–469. MR 1647912, DOI 10.1512/iumj.1998.47.1521
- L. Grafakos and A. Stefanov, Convolution Calderón-Zygmund singular integral operators with rough kernels, Analysis of divergence (Orono, ME, 1997) Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 1999, pp. 119–143. MR 1731263
- Steve Hofmann, Weighted norm inequalities and vector valued inequalities for certain rough operators, Indiana Univ. Math. J. 42 (1993), no. 1, 1–14. MR 1218703, DOI 10.1512/iumj.1993.42.42001
- Feng Liu and Dashan Fan, Weighted estimates for rough singular integrals with applications to angular integrability, Pacific J. Math. 301 (2019), no. 1, 267–295. MR 4007379, DOI 10.2140/pjm.2019.301.267
- Feng Liu, A note on singular integrals with angular integrability, J. Inequal. Appl. , posted on (2019), Paper No. 261, 8. MR 4025522, DOI 10.1186/s13660-019-2214-4
- Ronghui Liu, Feng Liu, and Huoxiong Wu, Mixed radial-angular integrability for rough singular integrals and maximal operators, Proc. Amer. Math. Soc. 148 (2020), no. 9, 3943–3956. MR 4127838, DOI 10.1090/proc/15037
- S. Lu, Y. Ding and D. Yan, Singular integral and related topics, World Scientific, Singapore, 2007.
- Fulvio Ricci and Guido Weiss, A characterization of $H^{1}(\Sigma _{n-1})$, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 289–294. MR 545268
- Atanas Stefanov, Characterizations of $H^1$ and applications to singular integrals, Illinois J. Math. 44 (2000), no. 3, 574–592. MR 1772430
- Jacob Sterbenz, Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not. 4 (2005), 187–231. With an appendix by Igor Rodnianski. MR 2128434, DOI 10.1155/IMRN.2005.187
- Terence Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrödinger equation, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1471–1485. MR 1765155, DOI 10.1080/03605300008821556
Bibliographic Information
- Ronghui Liu
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
- Email: liuronghuimath@126.com
- Huoxiong Wu
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China
- MR Author ID: 357899
- Email: huoxwu@xmu.edu.cn
- Received by editor(s): March 16, 2021
- Received by editor(s) in revised form: June 7, 2021
- Published electronically: December 22, 2021
- Additional Notes: The second author is the corresponding author.
The research was supported by the NNSF of China (Nos. 11771358, 11871101, 12171399). - Communicated by: Ariel Barton
- © Copyright 2021 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 1141-1151
- MSC (2020): Primary 42B20
- DOI: https://doi.org/10.1090/proc/15705
- MathSciNet review: 4375709