Toeplitz matrices acting on the $\ell ^2$-space of an imprimitivity bimodule
HTML articles powered by AMS MathViewer
- by Beatriz Abadie
- Proc. Amer. Math. Soc. 150 (2022), 1269-1278
- DOI: https://doi.org/10.1090/proc/15746
- Published electronically: January 5, 2022
- PDF | Request permission
Abstract:
We give a definition of Toeplitz matrix acting on the $\ell ^2$-space of an imprimitivity bimodule $X$ over a $C^*$-algebra $A$. We characterize the set of Toeplitz matrices as the closure in a certain topology of the image of the left regular representation of the crossed product $A\rtimes X$.References
- Beatriz Abadie, Søren Eilers, and Ruy Exel, Morita equivalence for crossed products by Hilbert $C^*$-bimodules, Trans. Amer. Math. Soc. 350 (1998), no. 8, 3043–3054. MR 1467459, DOI 10.1090/S0002-9947-98-02133-3
- Siegfried Echterhoff and Iain Raeburn, Multipliers of imprimitivity bimodules and Morita equivalence of crossed products, Math. Scand. 76 (1995), no. 2, 289–309. MR 1354585, DOI 10.7146/math.scand.a-12543
- Lawrence G. Brown, James A. Mingo, and Nien-Tsu Shen, Quasi-multipliers and embeddings of Hilbert $C^\ast$-bimodules, Canad. J. Math. 46 (1994), no. 6, 1150–1174. MR 1304338, DOI 10.4153/CJM-1994-065-5
- Ruy Exel, Amenability for Fell bundles, J. Reine Angew. Math. 492 (1997), 41–73. MR 1488064, DOI 10.1515/crll.1997.492.41
- J. M. G. Fell and R. S. Doran, Representations of $^*$-algebras, locally compact groups, and Banach $^*$-algebraic bundles. Vol. 2, Pure and Applied Mathematics, vol. 126, Academic Press, Inc., Boston, MA, 1988. Banach $^*$-algebraic bundles, induced representations, and the generalized Mackey analysis. MR 936629, DOI 10.1016/S0079-8169(09)60018-0
- E. C. Lance, Hilbert $C^*$-modules, London Mathematical Society Lecture Note Series, vol. 210, Cambridge University Press, Cambridge, 1995. A toolkit for operator algebraists. MR 1325694, DOI 10.1017/CBO9780511526206
- Gerard J. Murphy, $C^*$-algebras and operator theory, Academic Press, Inc., Boston, MA, 1990. MR 1074574
- Iain Raeburn and Dana P. Williams, Morita equivalence and continuous-trace $C^*$-algebras, Mathematical Surveys and Monographs, vol. 60, American Mathematical Society, Providence, RI, 1998. MR 1634408, DOI 10.1090/surv/060
- Marc A. Rieffel, Induced representations of $C^{\ast }$-algebras, Advances in Math. 13 (1974), 176–257. MR 353003, DOI 10.1016/0001-8708(74)90068-1
Bibliographic Information
- Beatriz Abadie
- Affiliation: Centro de Matemática. Facultad de Ciencias. Iguá 4225, CP 11 400, Montevideo, Uruguay
- MR Author ID: 352021
- Email: abadie@cmat.edu.uy
- Received by editor(s): October 11, 2020
- Received by editor(s) in revised form: April 16, 2021, and July 3, 2021
- Published electronically: January 5, 2022
- Communicated by: Adrian Ioana
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 1269-1278
- MSC (2020): Primary 46L08; Secondary 46L55
- DOI: https://doi.org/10.1090/proc/15746
- MathSciNet review: 4375720