Krieger’s type of nonsingular Poisson suspensions and IDPFT systems
HTML articles powered by AMS MathViewer
- by Alexandre I. Danilenko and Zemer Kosloff
- Proc. Amer. Math. Soc. 150 (2022), 1541-1557
- DOI: https://doi.org/10.1090/proc/15695
- Published electronically: January 13, 2022
- PDF | Request permission
Abstract:
Given an infinite countable discrete amenable group $\Gamma$, we construct explicitly sharply weak mixing nonsingular Poisson $\Gamma$-actions of each Krieger’s type: $III_\lambda$, for $\lambda \in [0,1]$, and $II_\infty$. The result is new even for $\Gamma =\mathbb {Z}$. As these Poisson suspension actions are over very special dissipative base, we obtain also new examples of sharply weak mixing nonsingular Bernoulli $\Gamma$-actions and infinite direct product of finite type systems of each possible Krieger’s type.References
- Jon Aaronson, An introduction to infinite ergodic theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, Providence, RI, 1997. MR 1450400, DOI 10.1090/surv/050
- T. Berendschot, S. Vaes, Nonsingular Bernoulli actions of arbitrary Krieger type, Anal. PDE, to appear.
- Harry Björk, Table errata: Handbook of mathematical functions with formulas, graphs, and mathematical tables (Nat. Bur. Standards, Washington, D. C., 1964) edited by Milton Abramowitz and Irene A. Stegun, Math. Comp. 23 (1969), no. 107, 691. MR 415956, DOI 10.1090/S0025-5718-1969-0415956-1
- J. T. Chang and D. Pollard, Conditioning as disintegration, Statist. Neerlandica 51 (1997), no. 3, 287–317. MR 1484954, DOI 10.1111/1467-9574.00056
- J. R. Choksi, J. M. Hawkins, and V. S. Prasad, Abelian cocycles for nonsingular ergodic transformations and the genericity of type $\textrm {III}_1$ transformations, Monatsh. Math. 103 (1987), no. 3, 187–205. MR 894170, DOI 10.1007/BF01364339
- A. I. Danilenko, Haagerup property and Kazhdan pairs via ergodic infinite measure preserving actions, preprint, arXiv:2102.07126, Studia Math., to appear.
- A. I. Danilenko, Z. Kosloff and E. Roy, Nonsingular Poisson suspensions, J. Anal. Math. (to appear).
- A. I. Danilenko, Z. Kosloff and E. Roy, Generic non-singular Poisson suspension is of type $III_1$, Ergodic Theory Dynam. Systems, 1–31. DOI 10.1017/etds.2021.5.
- A. I. Danilenko and M. Lemańczyk, Ergodic cocycles of IDPFT systems and nonsingular Gaussian actions, Ergodic Theory Dynam. Systems (to appear).
- Alexandre I. Danilenko and Cesar E. Silva, Ergodic theory: non-singular transformations, Mathematics of complexity and dynamical systems. Vols. 1–3, Springer, New York, 2012, pp. 329–356. MR 3220680, DOI 10.1007/978-1-4614-1806-1_{2}2
- David G. B. Hill, $\sigma$-finite invariant measures on infinite product spaces, Trans. Amer. Math. Soc. 153 (1971), 347–370. MR 274725, DOI 10.1090/S0002-9947-1971-0274725-1
- Zemer Kosloff and Terry Soo, The orbital equivalence of Bernoulli actions and their Sinai factors, J. Mod. Dyn. 17 (2021), 145–182. MR 4251940, DOI 10.3934/jmd.2021005
- Calvin C. Moore, Invariant measures on product spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 447–459. MR 0227366
- Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1–141. MR 910005, DOI 10.1007/BF02790325
- Klaus Schmidt, Cocycles on ergodic transformation groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Co. of India, Ltd., Delhi, 1977. MR 0578731
- Klaus Schmidt and Peter Walters, Mildly mixing actions of locally compact groups, Proc. London Math. Soc. (3) 45 (1982), no. 3, 506–518. MR 675419, DOI 10.1112/plms/s3-45.3.506
- Y\B{o}ichir\B{o} Takahashi, Absolute continuity of Poisson random fields, Publ. Res. Inst. Math. Sci. 26 (1990), no. 4, 629–647. MR 1081507, DOI 10.2977/prims/1195170849
- Stefaan Vaes and Jonas Wahl, Bernoulli actions of type $\rm III_1$ and $L^2$-cohomology, Geom. Funct. Anal. 28 (2018), no. 2, 518–562. MR 3788210, DOI 10.1007/s00039-018-0438-y
Bibliographic Information
- Alexandre I. Danilenko
- Affiliation: B. Verkin Institute for Low Temperature Physics and Engineering of Ukrainian National Academy of Sciences, 47 Nauky Avenue, Kharkiv 61164, Ukraine
- MR Author ID: 265198
- ORCID: 0000-0002-3198-9013
- Email: alexandre.danilenko@gmail.com
- Zemer Kosloff
- Affiliation: Einstein Institute of Mathematics, Hebrew University of Jerusalem, Givat Ram. Jerusalem 9190401, Israel
- MR Author ID: 957057
- Email: zemer.kosloff@mail.huji.ac.il
- Received by editor(s): October 1, 2020
- Received by editor(s) in revised form: May 30, 2021, and June 7, 2021
- Published electronically: January 13, 2022
- Additional Notes: The second author was partially supported by ISF grant No. 1570/17.
- Communicated by: Katrin Gelfert
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 1541-1557
- MSC (2020): Primary 37A40
- DOI: https://doi.org/10.1090/proc/15695
- MathSciNet review: 4375743