Some coefficient estimates on real kernel $\alpha -$harmonic mappings
HTML articles powered by AMS MathViewer
- by Bo-Yong Long and Qi-Han Wang
- Proc. Amer. Math. Soc. 150 (2022), 1529-1540
- DOI: https://doi.org/10.1090/proc/15734
- Published electronically: January 28, 2022
- PDF | Request permission
Abstract:
We call the solution of a kind of second order homogeneous partial differential equation as real kernel $\alpha -$harmonic mappings. For this class of mappings, we explore its Heinz type inequality. Furthermore, for a subclass of real kernel $\alpha -$harmonic mappings with real coefficients, we estimate their coefficients. At last, we study the extremal function of Schwartz type lemma for the class of real kernel $\alpha -$harmonic mappings.References
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- Alexander Borichev and Haakan Hedenmalm, Weighted integrability of polyharmonic functions, Adv. Math. 264 (2014), 464–505. MR 3250291, DOI 10.1016/j.aim.2014.07.020
- D. Bshouty, W. Hengartner, and O. Hossian, Harmonic typically real mappings, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 4, 673–680. MR 1362948, DOI 10.1017/S030500410007451X
- J. Chen, A. Rasila, and X. Wang, Coefficient estimates and radii problems for certain classes of polyharmonic mappings, Complex Var. Elliptic Equ. 60 (2015), no. 3, 354–371. MR 3311963, DOI 10.1080/17476933.2014.936862
- Sh. Chen, S. Ponnusamy, and X. Wang, Bloch constant and Landau’s theorem for planar $p$-harmonic mappings, J. Math. Anal. Appl. 373 (2011), no. 1, 102–110. MR 2684461, DOI 10.1016/j.jmaa.2010.06.025
- Shaolin Chen and Matti Vuorinen, Some properties of a class of elliptic partial differential operators, J. Math. Anal. Appl. 431 (2015), no. 2, 1124–1137. MR 3365859, DOI 10.1016/j.jmaa.2015.06.026
- Xingdi Chen and David Kalaj, A representation theorem for standard weighted harmonic mappings with an integer exponent and its applications, J. Math. Anal. Appl. 444 (2016), no. 2, 1233–1241. MR 3535757, DOI 10.1016/j.jmaa.2016.07.035
- Michael Dorff, Maria Nowak, and Wojciech Szapiel, Typically real harmonic functions, Rocky Mountain J. Math. 42 (2012), no. 2, 567–581. MR 2915507, DOI 10.1216/RMJ-2012-42-2-567
- Peter Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, vol. 156, Cambridge University Press, Cambridge, 2004. MR 2048384, DOI 10.1017/CBO9780511546600
- Peter Duren, Walter Hengartner, and Richard S. Laugesen, The argument principle for harmonic functions, Amer. Math. Monthly 103 (1996), no. 5, 411–415. MR 1400723, DOI 10.2307/2974933
- R. R. Hall, On an inequality of E. Heinz, J. Analyse Math. 42 (1982/83), 185–198. MR 729409, DOI 10.1007/BF02786878
- Peijin Li and Saminthan Ponnusamy, Lipschitz continuity of quasiconformal mappings and of the solutions to second order elliptic PDE with respect to the distance ratio metric, Complex Anal. Oper. Theory 12 (2018), no. 8, 1991–2001. MR 3864837, DOI 10.1007/s11785-017-0716-y
- Ming-Sheng Liu, Landau’s theorem for planar harmonic mappings, Comput. Math. Appl. 57 (2009), no. 7, 1142–1146. MR 2508544, DOI 10.1016/j.camwa.2009.01.009
- Ming-Sheng Liu and Huaihui Chen, The Landau-Bloch type theorems for planar harmonic mappings with bounded dilation, J. Math. Anal. Appl. 468 (2018), no. 2, 1066–1081. MR 3852565, DOI 10.1016/j.jmaa.2018.08.059
- Zhihong Liu, Yueping Jiang, and Yong Sun, Convolutions of harmonic half-plane mappings with harmonic vertical strip mappings, Filomat 31 (2017), no. 7, 1843–1856. MR 3635221, DOI 10.2298/FIL1707843L
- Bo-Yong Long and Qi-Han Wang, Starlikeness, convexity and Landau type theorem of the real kernel $\alpha -$harmonic mappings, Filomat 35 (2021), no. 8 2629–2644, DOI 10.2298/FIL2108629L.
- Bo-Yong Long and Qi-Han Wang, Some geometric properties of complex-valued kernel $\alpha$-harmonic mappings, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 4, 2381–2399. MR 4270171, DOI 10.1007/s40840-021-01075-1
- Anders Olofsson, Differential operators for a scale of Poisson type kernels in the unit disc, J. Anal. Math. 123 (2014), 227–249. MR 3233580, DOI 10.1007/s11854-014-0019-4
- Anders Olofsson and Jens Wittsten, Poisson integrals for standard weighted Laplacians in the unit disc, J. Math. Soc. Japan 65 (2013), no. 2, 447–486. MR 3055593
- S. Ponnusamy and M. Vuorinen, Univalence and convexity properties for Gaussian hypergeometric functions, Rocky Mountain J. Math. 31 (2001), no. 1, 327–353. MR 1821384, DOI 10.1216/rmjm/1008959684
- J. Qiao, Univalent harmonic and biharmonic mappings with integer coefficients in complex quadratic fields, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 4, 1637–1646. MR 3549984, DOI 10.1007/s40840-016-0346-y
- Priyanka Sangal and A. Swaminathan, Starlikeness of Gaussian hypergeometric functions using positivity techniques, Bull. Malays. Math. Sci. Soc. 41 (2018), no. 1, 507–521. MR 3743851, DOI 10.1007/s40840-016-0420-5
- Toshiyuki Sugawa and Li-Mei Wang, Spirallikeness of shifted hypergeometric functions, Ann. Acad. Sci. Fenn. Math. 42 (2017), no. 2, 963–977. MR 3701659, DOI 10.5186/aasfm.2017.4257
- M. K. Wang, Y. M. Chu, and Y. P. Jiang, Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions, Rocky Mountain J. Math. 46 (2016), no. 2, 679–691. MR 3529087, DOI 10.1216/RMJ-2016-46-2-679
- Xiao-Tian Wang, Xiang-Qian Liang, and Yu-Lin Zhang, On harmonic typically real mappings, J. Math. Anal. Appl. 277 (2003), no. 2, 533–554. MR 1961244, DOI 10.1016/S0022-247X(02)00626-1
- Zhi-Gang Wang, Zhi-Hong Liu, and Ying-Chun Li, On the linear combinations of harmonic univalent mappings, J. Math. Anal. Appl. 400 (2013), no. 2, 452–459. MR 3004976, DOI 10.1016/j.jmaa.2012.09.011
- Zhen-Hang Yang, Yu-Ming Chu, and Miao-Kun Wang, Monotonicity criterion for the quotient of power series with applications, J. Math. Anal. Appl. 428 (2015), no. 1, 587–604. MR 3327005, DOI 10.1016/j.jmaa.2015.03.043
Bibliographic Information
- Bo-Yong Long
- Affiliation: School of Mathematical Sciences, Anhui University, Hefei 230601, People’s Republic of China
- Email: boyonglong@163.com
- Qi-Han Wang
- Affiliation: School of Mathematical Sciences, Anhui University, Hefei 230601, People’s Republic of China
- Email: qihan@ahu.edu.cn
- Received by editor(s): April 16, 2021
- Received by editor(s) in revised form: May 27, 2021, and May 28, 2021
- Published electronically: January 28, 2022
- Additional Notes: The work was supported by the NSFC (No.11501001), Natural Science Foundation of Anhui Province(1908085MA18), Foundation of Anhui Educational Committee (KJ2020A0002), China
- Communicated by: Ariel Barton
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 1529-1540
- MSC (2020): Primary 30C99; Secondary 30C50, 31A30
- DOI: https://doi.org/10.1090/proc/15734
- MathSciNet review: 4375742