Strong convexity for harmonic functions on compact symmetric spaces
HTML articles powered by AMS MathViewer
- by Gabor Lippner, Dan Mangoubi, Zachary McGuirk and Rachel Yovel
- Proc. Amer. Math. Soc. 150 (2022), 1613-1622
- DOI: https://doi.org/10.1090/proc/15735
- Published electronically: January 26, 2022
- PDF | Request permission
Abstract:
Let $h$ be a harmonic function defined on a spherical disk. It is shown that $\Delta ^k |h|^2$ is nonnegative for all $k\in \mathbb {N}$ where $\Delta$ is the Laplace-Beltrami operator. This fact is generalized to harmonic functions defined on a disk in a normal homogeneous compact Riemannian manifold, and in particular in a symmetric space of the compact type. This complements a similar property for harmonic functions on $\mathbb {R}^n$ discovered by the first two authors and is related to strong convexity of the $L^2$-growth function of harmonic functions.References
- Shmuel Agmon, Unicité et convexité dans les problèmes différentiels, Séminaire de Mathématiques Supérieures, No. 13 (Été, vol. 1965, Les Presses de l’Université de Montréal, Montreal, Que., 1966 (French). MR 0252808
- Frederick J. Almgren Jr., Almgren’s big regularity paper, World Scientific Monograph Series in Mathematics, vol. 1, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. $Q$-valued functions minimizing Dirichlet’s integral and the regularity of area-minimizing rectifiable currents up to codimension 2; With a preface by Jean E. Taylor and Vladimir Scheffer. MR 1777737
- M. Berger, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 15 (1961), 179–246 (French). MR 133083
- Daniel Bump, Lie groups, 2nd ed., Graduate Texts in Mathematics, vol. 225, Springer, New York, 2013. MR 3136522, DOI 10.1007/978-1-4614-8024-2
- Élie Cartan, La géométrie des groupes simples, Ann. Mat. Pura Appl. 4 (1927), no. 1, 209–256 (French). MR 1553103, DOI 10.1007/BF02409989
- J. Faraut, Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl. (9) 58 (1979), no. 4, 369–444 (French). MR 566654
- Sigurđur Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239–299. MR 117681, DOI 10.1007/BF02564248
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original. MR 1834454, DOI 10.1090/gsm/034
- Sigurdur Helgason, Groups and geometric analysis, Mathematical Surveys and Monographs, vol. 83, American Mathematical Society, Providence, RI, 2000. Integral geometry, invariant differential operators, and spherical functions; Corrected reprint of the 1984 original. MR 1790156, DOI 10.1090/surv/083
- Nathan Jacobson, Lie algebras, Dover Publications, Inc., New York, 1979. Republication of the 1962 original. MR 559927
- Alexander Kirillov Jr., An introduction to Lie groups and Lie algebras, Cambridge Studies in Advanced Mathematics, vol. 113, Cambridge University Press, Cambridge, 2008. MR 2440737, DOI 10.1017/CBO9780511755156
- Gabor Lippner and Dan Mangoubi, Harmonic functions on the lattice: absolute monotonicity and propagation of smallness, Duke Math. J. 164 (2015), no. 13, 2577–2595. MR 3405594, DOI 10.1215/00127094-3164790
- Katsumi Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33–65. MR 59050, DOI 10.2307/2372398
- Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
- Hillel Poritsky, Generalizations of the Gauss law of the spherical mean, Trans. Amer. Math. Soc. 43 (1938), no. 2, 199–225. MR 1501939, DOI 10.1090/S0002-9947-1938-1501939-3
- Rachel Yovel, Positivity properties of harmonic functions on the sphere, M.Sc. Thesis, The Hebrew University of Jerusalem, 2015.
Bibliographic Information
- Gabor Lippner
- Affiliation: Department of Mathematics, Northeastern University, 360 Huntington Ave, Boston, Massachusetts 02115
- MR Author ID: 714415
- ORCID: 0000-0002-1426-0597
- Email: g.lippner@northeastern.edu
- Dan Mangoubi
- Affiliation: Einstein Institute of Mathematics, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- MR Author ID: 729675
- ORCID: 0000-0001-7559-5588
- Email: dan.mangoubi@mail.huji.ac.il
- Zachary McGuirk
- Affiliation: Einstein Institute of Mathematics, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- MR Author ID: 1255865
- Email: zachary.mcguirk@mail.huji.ac.il
- Rachel Yovel
- Affiliation: Einstein Institute of Mathematics, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Email: rachel.yovel@mail.huji.ac.il
- Received by editor(s): April 27, 2021
- Received by editor(s) in revised form: June 20, 2021
- Published electronically: January 26, 2022
- Additional Notes: The second, third, and fourth authors were supported by ISF grant nos. 753/14 and 681/18. The first and second authors were supported by BSF grant no. 2014108
- Communicated by: Jiaping Wang
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 1613-1622
- MSC (2020): Primary 43A85; Secondary 31C05, 22E30
- DOI: https://doi.org/10.1090/proc/15735
- MathSciNet review: 4375748