Some remarks on the Sobolev inequality in Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Daniele Andreucci and Anatoli F. Tedeev
- Proc. Amer. Math. Soc. 150 (2022), 1657-1667
- DOI: https://doi.org/10.1090/proc/15774
- Published electronically: January 27, 2022
- PDF | Request permission
Abstract:
We investigate Sobolev and Hardy inequalities, specifically weighted Minerbe’s type estimates, in noncompact complete connected Riemannian manifolds whose geometry is described by an isoperimetric profile. In particular, we assume that the manifold satisfies the $p$-hyperbolicity property, stated in terms of a necessary integral Dini condition on the isoperimetric profile. Our method seems to us to combine sharply the knowledge of the isoperimetric profile and the optimal Bliss type Hardy inequality depending on the geometry of the manifold. We recover the well known best Sobolev constant in the Euclidean case.References
- D. Andreucci and A. F. Tedeev, Extinction in a finite time for parabolic equations of fast diffusion type on manifolds, Operator theory and differential equations, Trends Math., Birkhäuser/Springer, Cham, [2021] ©2021, pp. 1–6. MR 4221137, DOI 10.1007/978-3-030-49763-7_{1}
- Daniele Andreucci and Anatoli F. Tedeev, Sharp estimates and finite speed of propagation for a Neumann problem in domains narrowing at infinity, Adv. Differential Equations 5 (2000), no. 7-9, 833–860. MR 1776343
- Daniele Andreucci and Anatoli F. Tedeev, Optimal decay rate for degenerate parabolic equations on noncompact manifolds, Methods Appl. Anal. 22 (2015), no. 4, 359–376. MR 3457534, DOI 10.4310/MAA.2015.v22.n4.a2
- Thierry Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573–598 (French). MR 448404
- Thierry Aubin, Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. MR 1636569, DOI 10.1007/978-3-662-13006-3
- Elvise Berchio, Debdip Ganguly, and Gabriele Grillo, Sharp Poincaré-Hardy and Poincaré-Rellich inequalities on the hyperbolic space, J. Funct. Anal. 272 (2017), no. 4, 1661–1703. MR 3590248, DOI 10.1016/j.jfa.2016.11.018
- G. A. Bliss, An Integral Inequality, J. London Math. Soc. 5 (1930), no. 1, 40–46. MR 1574997, DOI 10.1112/jlms/s1-5.1.40
- Yu. D. Burago and V. A. Zalgaller, Geometric inequalities, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR 936419, DOI 10.1007/978-3-662-07441-1
- Isaac Chavel, Isoperimetric inequalities, Cambridge Tracts in Mathematics, vol. 145, Cambridge University Press, Cambridge, 2001. Differential geometric and analytic perspectives. MR 1849187
- Mu-Fa Chen, The optimal constant in Hardy-type inequalities, Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 5, 731–754. MR 3333168, DOI 10.1007/s10114-015-4731-5
- Andrea Cianchi, Symmetrization in anisotropic elliptic problems, Comm. Partial Differential Equations 32 (2007), no. 4-6, 693–717. MR 2334829, DOI 10.1080/03605300600634973
- D. Cordero-Erausquin, B. Nazaret, and C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Adv. Math. 182 (2004), no. 2, 307–332. MR 2032031, DOI 10.1016/S0001-8708(03)00080-X
- Lorenzo D’Ambrosio and Serena Dipierro, Hardy inequalities on Riemannian manifolds and applications, Ann. Inst. H. Poincaré C Anal. Non Linéaire 31 (2014), no. 3, 449–475. MR 3208450, DOI 10.1016/j.anihpc.2013.04.004
- Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520. MR 123260, DOI 10.2307/1970227
- Alexander Grigor′yan, Isoperimetric inequalities and capacities on Riemannian manifolds, The Maz′ya anniversary collection, Vol. 1 (Rostock, 1998) Oper. Theory Adv. Appl., vol. 109, Birkhäuser, Basel, 1999, pp. 139–153. MR 1747869
- Emmanuel Hebey and Michel Vaugon, The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds, Duke Math. J. 79 (1995), no. 1, 235–279. MR 1340298, DOI 10.1215/S0012-7094-95-07906-X
- M. Ledoux, On manifolds with non-negative Ricci curvature and Sobolev inequalities, Comm. Anal. Geom. 7 (1999), no. 2, 347–353. MR 1685586, DOI 10.4310/CAG.1999.v7.n2.a7
- Ying Li and Yong-Hua Mao, The optimal constant in generalized Hardy’s inequality, Math. Inequal. Appl. 23 (2020), no. 1, 257–266. MR 4061539, DOI 10.7153/mia-2020-23-20
- Joaquim Martín and Mario Milman, Towards a unified theory of Sobolev inequalities, Special functions, partial differential equations, and harmonic analysis, Springer Proc. Math. Stat., vol. 108, Springer, Cham, 2014, pp. 163–201. MR 3297660, DOI 10.1007/978-3-319-10545-1_{1}3
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- Vladimir M. Miklyukov and Matti K. Vuorinen, Hardy’s inequality for $W^{1,p}_0$-functions on Riemannian manifolds, Proc. Amer. Math. Soc. 127 (1999), no. 9, 2745–2754. MR 1600117, DOI 10.1090/S0002-9939-99-04849-2
- Vincent Minerbe, Weighted Sobolev inequalities and Ricci flat manifolds, Geom. Funct. Anal. 18 (2009), no. 5, 1696–1749. MR 2481740, DOI 10.1007/s00039-009-0701-3
- A. I. Nazarov, The Hardy-Sobolev inequalities in a cone, Algebra i Analiz 22 (2010), no. 6, 200–213 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 22 (2011), no. 6, 997–1006. MR 2760091, DOI 10.1090/S1061-0022-2011-01180-X
- B. Opic and A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical, Harlow, 1990. MR 1069756
- Renato H. L. Pedrosa and Manuel Ritoré, Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems, Indiana Univ. Math. J. 48 (1999), no. 4, 1357–1394. MR 1757077, DOI 10.1512/iumj.1999.48.1614
- Jimmy Petean and Juan Miguel Ruiz, Isoperimetric profile comparisons and Yamabe constants, Ann. Global Anal. Geom. 40 (2011), no. 2, 177–189. MR 2811624, DOI 10.1007/s10455-011-9252-6
- Manuel Ritoré and Efstratios Vernadakis, Large isoperimetric regions in the product of a compact manifold with Euclidean space, Adv. Math. 306 (2017), 958–972. MR 3581323, DOI 10.1016/j.aim.2016.11.001
- Antonio Ros, The isoperimetric problem, Global theory of minimal surfaces, Clay Math. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 2005, pp. 175–209. MR 2167260
- Juan Miguel Ruiz and Areli Vázquez Juárez, Isoperimetric estimates in low-dimensional Riemannian products, Ann. Global Anal. Geom. 59 (2021), no. 4, 417–434. MR 4258014, DOI 10.1007/s10455-021-09757-6
- Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353–372. MR 463908, DOI 10.1007/BF02418013
- M. Troyanov, Parabolicity of manifolds, Siberian Adv. Math. 9 (1999), no. 4, 125–150. MR 1749853
- Changyu Xia, Complete manifolds with nonnegative Ricci curvature and almost best Sobolev constant, Illinois J. Math. 45 (2001), no. 4, 1253–1259. MR 1894894
Bibliographic Information
- Daniele Andreucci
- Affiliation: Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy
- MR Author ID: 26035
- ORCID: 0000-0001-8361-358X
- Email: daniele.andreucci@sbai.uniroma1.it
- Anatoli F. Tedeev
- Affiliation: South Mathematical Institute of VSC RAS, Vladikavkaz, Russian Federation; and North-Caucasus Center for Mathematical Research of the Vladikavkaz Scientific Centre of the Russian Academy of Sciences, Vladikavkaz, Russian Federation
- MR Author ID: 202681
- ORCID: 0000-0001-7883-9795
- Email: a_tedeev@yahoo.com
- Received by editor(s): April 3, 2021
- Received by editor(s) in revised form: July 19, 2021, and July 21, 2021
- Published electronically: January 27, 2022
- Additional Notes: The first author is member of the Gruppo Nazionale per la Fisica Matematica (GNFM) of the Istituto Nazionale di Alta Matematica (INdAM)
- Communicated by: Nageswari Shanmugalingam
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 1657-1667
- MSC (2020): Primary 46E35, 53C21
- DOI: https://doi.org/10.1090/proc/15774
- MathSciNet review: 4375753