Convolution properties of Orlicz spaces on hypergroups
HTML articles powered by AMS MathViewer
- by Ali Reza Bagheri Salec, Vishvesh Kumar and Seyyed Mohammad Tabatabaie
- Proc. Amer. Math. Soc. 150 (2022), 1685-1696
- DOI: https://doi.org/10.1090/proc/15799
- Published electronically: January 20, 2022
- PDF | Request permission
Abstract:
In this paper, for a locally compact commutative hypergroup $K$ and for a pair $(\Phi _1, \Phi _2)$ of Young functions satisfying sequence condition, we give a necessary condition in terms of aperiodic elements of the center of $K,$ for the convolution $f\ast g$ to exist a.e., where $f$ and $g$ are arbitrary elements of Orlicz spaces $L^{\Phi _1}(K)$ and $L^{\Phi _2}(K)$, respectively. As an application, we present some equivalent conditions for compactness of a compactly generated locally compact abelian group. Moreover, we also characterize compact convolution operators from $L^1_w(K)$ into $L^\Phi _w(K)$ for a weight $w$ on a locally compact hypergroup $K$.References
- F. Abtahi, R. Nasr-Isfahani, and A. Rejali, On the $L^p$-conjecture for locally compact groups, Arch. Math. (Basel) 89 (2007), no. 3, 237–242. MR 2352391, DOI 10.1007/s00013-007-1993-x
- Walter R. Bloom and Herbert Heyer, Harmonic analysis of probability measures on hypergroups, De Gruyter Studies in Mathematics, vol. 20, Walter de Gruyter & Co., Berlin, 1995. MR 1312826, DOI 10.1515/9783110877595
- C. Chen and C-H. Chu, Hypercyclic weighted translations on groups, Proc. Amer. Math. Soc. 139 (2011), no. 8, 2839–2846. MR 2801625, DOI 10.1090/S0002-9939-2011-10718-4
- Chung-Chuan Chen, Chaotic weighted translations on groups, Arch. Math. (Basel) 97 (2011), no. 1, 61–68. MR 2820588, DOI 10.1007/s00013-011-0262-1
- Kui-Yo Chen, On aperiodicity and hypercyclic weighted translation operators, J. Math. Anal. Appl. 462 (2018), no. 2, 1669–1678. MR 3774310, DOI 10.1016/j.jmaa.2018.02.062
- John B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR 768926, DOI 10.1007/978-1-4757-3828-5
- Charles F. Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331–348. MR 320635, DOI 10.1090/S0002-9947-1973-0320635-2
- Charles F. Dunkl and Donald E. Ramirez, A family of countably compact $P_{\ast }$-hypergroups, Trans. Amer. Math. Soc. 202 (1975), 339–356. MR 380267, DOI 10.1090/S0002-9947-1975-0380267-9
- F. Ghahramani and A. R. Medgalchi, Compact multipliers on weighted hypergroup algebras, Math. Proc. Cambridge Philos. Soc. 98 (1985), no. 3, 493–500. MR 803608, DOI 10.1017/S0305004100063696
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- H. Hudzik, A. Kamińska, and J. Musielak, On some Banach algebras given by a modular, A. Haar memorial conference, Vol. I, II (Budapest, 1985) Colloq. Math. Soc. János Bolyai, vol. 49, North-Holland, Amsterdam, 1987, pp. 445–463. MR 899550
- Robert I. Jewett, Spaces with an abstract convolution of measures, Advances in Math. 18 (1975), no. 1, 1–101. MR 394034, DOI 10.1016/0001-8708(75)90002-X
- A. Kamińska and J. Musielak, On convolution operator in Orlicz spaces, Rev. Mat. Univ. Complut. Madrid 2 (1989), no. suppl., 157–178. Congress on Functional Analysis (Madrid, 1988). MR 1057217
- David Kerr and Hanfeng Li, Ergodic theory, Springer Monographs in Mathematics, Springer, Cham, 2016. Independence and dichotomies. MR 3616077, DOI 10.1007/978-3-319-49847-8
- Vishvesh Kumar, Kenneth A. Ross, and Ajit Iqbal Singh, Hypergroup deformations of semigroups, Semigroup Forum 99 (2019), no. 1, 169–195. MR 3978505, DOI 10.1007/s00233-019-10003-6
- Vishvesh Kumar, Kenneth A. Ross, and Ajit Iqbal Singh, An addendum to “Hypergroup deformations of semigroups”, Semigroup Forum 99 (2019), no. 1, 196–197. MR 3978506, DOI 10.1007/s00233-019-10023-2
- Vishvesh Kumar, Kenneth A. Ross, and Ajit Iqbal Singh, Ramsey theory for hypergroups, Semigroup Forum 100 (2020), no. 2, 482–504. MR 4078294, DOI 10.1007/s00233-019-10009-0
- Vishvesh Kumar, Ritumoni Sarma, and N. Shravan Kumar, Orlicz spaces on hypergroups, Publ. Math. Debrecen 94 (2019), no. 1-2, 31–47. MR 3912229, DOI 10.5486/pmd.2019.8158
- Vishvesh Kumar and Ritumoni Sarma, The Hausdorff-Young inequality for Orlicz spaces on compact hypergroups, Colloq. Math. 160 (2020), no. 1, 41–51. MR 4071812, DOI 10.4064/cm7627-4-2019
- Vishvesh Kumar, Orlicz spaces and amenability of hypergroups, Bull. Iranian Math. Soc. 46 (2020), no. 4, 1035–1043. MR 4125943, DOI 10.1007/s41980-019-00310-7
- Vishvesh Kumar and Seyyed Mohammad Tabatabaie, Hypercyclic sequences of weighted translations on hypergroups, Semigroup Forum 103 (2021), no. 3, 916–934. MR 4331125, DOI 10.1007/s00233-021-10226-6
- Richard O’Neil, Fractional integration in Orlicz spaces. I, Trans. Amer. Math. Soc. 115 (1965), 300–328. MR 194881, DOI 10.1090/S0002-9947-1965-0194881-0
- Alen Osançlıol and Serap Öztop, Weighted Orlicz algebras on locally compact groups, J. Aust. Math. Soc. 99 (2015), no. 3, 399–414. MR 3417069, DOI 10.1017/S1446788715000257
- Serap Öztop and Seyyed Mohammad Tabatabaie, Weighted Orlicz algebras on hypergroups, Filomat 34 (2020), no. 9, 2991–3002. MR 4208242, DOI 10.2298/FIL2009991O
- T. S. Quek and Leonard Y. H. Yap, Sharpness of Young’s inequality for convolution, Math. Scand. 53 (1983), no. 2, 221–237. MR 745076, DOI 10.7146/math.scand.a-12030
- M. Rajagopalan, $P^{p}$-conjecture for locally compact groups. I, Trans. Amer. Math. Soc. 125 (1966), 216–222. MR 201991, DOI 10.1090/S0002-9947-1966-0201991-9
- M. Rajagopalan and W. Zelazko, $L^{p}$-conjecture for solvable locally compact groups, J. Indian Math. Soc. (N.S.) 29 (1965), 87–92. MR 185036
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. MR 1113700
- M. M. Rao and Z. D. Ren, Applications of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 250, Marcel Dekker, Inc., New York, 2002. MR 1890178, DOI 10.1201/9780203910863
- Kenneth A. Ross, Centers of hypergroups, Trans. Amer. Math. Soc. 243 (1978), 251–269. MR 493161, DOI 10.1090/S0002-9947-1978-0493161-2
- Sadahiro Saeki, The $L^p$-conjecture and Young’s inequality, Illinois J. Math. 34 (1990), no. 3, 614–627. MR 1053566
- René Spector, Aperçu de la théorie des hypergroupes, Analyse harmonique sur les groupes de Lie (Sém., Nancy-Strasbourg, 1973–1975) Lecture Notes in Math., Vol. 497, Springer, Berlin, 1975, pp. 643–673 (French). MR 0447974
- Seyyed Mohammad Tabatabaie and AliReza Bagheri Salec, Convolution of two weighted Orlicz spaces on hypergroups, Rev. Colombiana Mat. 54 (2020), no. 2, 117–128 (English, with English and Spanish summaries). MR 4260831, DOI 10.15446/recolma.v54n2.93841
- Seyyed Mohammad Tabatabaie, Ali Reza Bagheri Salec, and Maryam Zare Sanjari, A note on Orlicz algebras, Oper. Matrices 14 (2020), no. 1, 139–144. MR 4080929, DOI 10.7153/oam-2020-14-11
- Seyyed Mohammad Tabatabaie, AliReza Bagheri Salec, and Maryam Zare Sanjari, Remarks on weighted Orlicz spaces on locally compact groups, Math. Inequal. Appl. 23 (2020), no. 3, 1015–1025. MR 4128966, DOI 10.7153/mia-2020-23-78
- S. M. Tabatabaie and F. Haghighifar, $L^p$-Conjecture on hypergroups, Sahand Commu. Math. Anal., 12 (2018), 121–130.
- Michael Voit, Factorization of probability measures on symmetric hypergroups, J. Austral. Math. Soc. Ser. A 50 (1991), no. 3, 417–467. MR 1096896, DOI 10.1017/S1446788700033012
Bibliographic Information
- Ali Reza Bagheri Salec
- Affiliation: Department of Mathematics, University of Qom, Qom, Iran
- MR Author ID: 782461
- Email: r-bagheri@qom.ac.ir
- Vishvesh Kumar
- Affiliation: Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium
- MR Author ID: 1276046
- ORCID: 0000-0003-4799-9029
- Email: vishveshmishra@gmail.com
- Seyyed Mohammad Tabatabaie
- Affiliation: Department of Mathematics, University of Qom, Qom, Iran
- MR Author ID: 841800
- ORCID: 0000-0003-4392-2577
- Email: sm.tabatabaie@qom.ac.ir
- Received by editor(s): January 18, 2021
- Received by editor(s) in revised form: July 17, 2021, and July 26, 2021
- Published electronically: January 20, 2022
- Additional Notes: The second author was supported by FWO Odysseus1 grant G.0H94.18N: Analysis and Partial Differential Equations and by the Methusalem programme of the Ghent University Special Research Fund (BOF)(Grant number 01M01021).
The second author is the corresponding author - Communicated by: Stephen Dilworth
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 1685-1696
- MSC (2020): Primary 46E30, 43A62; Secondary 43A15
- DOI: https://doi.org/10.1090/proc/15799
- MathSciNet review: 4375755
Dedicated: Dedicated to Professor Kenneth A. Ross on his 85th birthday