The Hilbert-Kunz function of some quadratic quotients of the Rees algebra
HTML articles powered by AMS MathViewer
- by Francesco Strazzanti and Santiago Zarzuela Armengou
- Proc. Amer. Math. Soc. 150 (2022), 1493-1503
- DOI: https://doi.org/10.1090/proc/15819
- Published electronically: January 27, 2022
- PDF | Request permission
Abstract:
Given a commutative local ring $(R,\mathfrak m)$ and an ideal $I$ of $R$, a family of quotients of the Rees algebra $R[It]$ has been recently studied as a unified approach to the Nagata’s idealization and the amalgamated duplication and as a way to construct interesting examples, especially integral domains. When $R$ is noetherian of prime characteristic, we compute the Hilbert-Kunz function of the members of this family and, provided that either $I$ is $\mathfrak {m}$-primary or $R$ is regular and F-finite, we also find their Hilbert-Kunz multiplicity. Some consequences and examples are explored.References
- D. D. Anderson and Michael Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3–56. MR 2462381, DOI 10.1216/JCA-2009-1-1-3
- V. Barucci, M. D’Anna, and F. Strazzanti, A family of quotients of the Rees algebra, Comm. Algebra 43 (2015), no. 1, 130–142. MR 3240409, DOI 10.1080/00927872.2014.897549
- V. Barucci, M. D’Anna, and F. Strazzanti, Families of Gorenstein and almost Gorenstein rings, Ark. Mat. 54 (2016), no. 2, 321–338. MR 3546356, DOI 10.1007/s11512-016-0235-5
- Alessio Borzì, A characterization of the Arf property for quadratic quotients of the Rees algebra, J. Algebra Appl. 19 (2020), no. 7, 2050127, 14. MR 4129174, DOI 10.1142/S0219498820501273
- H. Brenner, Irrational Hilbert-Kunz multiplicities, arXiv:1305.5873, 2013.
- C.-Y. Jean Chan and Kazuhiko Kurano, Hilbert-Kunz functions over rings regular in codimension one, Comm. Algebra 44 (2016), no. 1, 141–163. MR 3413678, DOI 10.1080/00927872.2014.974247
- Marco D’Anna, A construction of Gorenstein rings, J. Algebra 306 (2006), no. 2, 507–519. MR 2271349, DOI 10.1016/j.jalgebra.2005.12.023
- Marco D’Anna, Carmelo A. Finocchiaro, and Marco Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra 44 (2016), no. 5, 1836–1851. MR 3490651, DOI 10.1080/00927872.2015.1033628
- Marco D’Anna and Marco Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), no. 3, 443–459. MR 2337762, DOI 10.1142/S0219498807002326
- Marco D’Anna, Raheleh Jafari, and Francesco Strazzanti, Tangent cones of monomial curves obtained by numerical duplication, Collect. Math. 70 (2019), no. 3, 461–477. MR 3990993, DOI 10.1007/s13348-019-00241-w
- Marco D’Anna and Francesco Strazzanti, New algebraic properties of quadratic quotients of the Rees algebra, J. Algebra Appl. 18 (2019), no. 3, 1950047, 14. MR 3924825, DOI 10.1142/S0219498819500476
- Florian Enescu, Applications of pseudocanonical covers to tight closure problems, J. Pure Appl. Algebra 178 (2003), no. 2, 159–167. MR 1952423, DOI 10.1016/S0022-4049(02)00172-X
- Florian Enescu, A finiteness condition on local cohomology in positive characteristic, J. Pure Appl. Algebra 216 (2012), no. 1, 115–118. MR 2826424, DOI 10.1016/j.jpaa.2011.05.008
- Carmelo Antonio Finocchiaro, A construction of Prüfer rings involving quotients of Rees algebras, J. Algebra Appl. 17 (2018), no. 6, 1850098, 16. MR 3805709, DOI 10.1142/S0219498818500986
- M. Hochster and Y. Yao, Second coefficients of Hilbert-Kunz functions for domains, preliminary preprint, http://www.math.lsa.umich.edu/~hochster/hk.pdf.
- Craig Huneke, Hilbert-Kunz multiplicity and the F-signature, Commutative algebra, Springer, New York, 2013, pp. 485–525. MR 3051383, DOI 10.1007/978-1-4614-5292-8_{1}5
- Craig Huneke, Moira A. McDermott, and Paul Monsky, Hilbert-Kunz functions for normal rings, Math. Res. Lett. 11 (2004), no. 4, 539–546. MR 2092906, DOI 10.4310/MRL.2004.v11.n4.a11
- Ernst Kunz, Characterizations of regular local rings of characteristic $p$, Amer. J. Math. 91 (1969), 772–784. MR 252389, DOI 10.2307/2373351
- Ernst Kunz, On Noetherian rings of characteristic $p$, Amer. J. Math. 98 (1976), no. 4, 999–1013. MR 432625, DOI 10.2307/2374038
- P. Monsky, The Hilbert-Kunz function, Math. Ann. 263 (1983), no. 1, 43–49. MR 697329, DOI 10.1007/BF01457082
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Anna Oneto, Francesco Strazzanti, and Grazia Tamone, One-dimensional Gorenstein local rings with decreasing Hilbert function, J. Algebra 489 (2017), 91–114. MR 3686974, DOI 10.1016/j.jalgebra.2017.05.038
- Maryam Salimi, Family of quotients of some special rings, J. Algebra Appl. 17 (2018), no. 12, 1850233, 8. MR 3895205, DOI 10.1142/S021949881850233X
- Elham Tavasoli, Some properties of a family of quotients of the Rees algebra, J. Algebra Appl. 18 (2019), no. 6, 1950113, 11. MR 3954667, DOI 10.1142/S0219498819501135
- Kei-ichi Watanabe and Ken-ichi Yoshida, Hilbert-Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra 230 (2000), no. 1, 295–317. MR 1774769, DOI 10.1006/jabr.1999.7956
Bibliographic Information
- Francesco Strazzanti
- Affiliation: Dipartimento di Matematica “Giuseppe Peano”, Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
- MR Author ID: 1029302
- ORCID: 0000-0001-6120-8380
- Email: francesco.strazzanti@gmail.com
- Santiago Zarzuela Armengou
- Affiliation: Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain
- MR Author ID: 218223
- Email: szarzuela@ub.edu
- Received by editor(s): February 1, 2020
- Received by editor(s) in revised form: August 11, 2021
- Published electronically: January 27, 2022
- Additional Notes: The first author was supported by INdAM, more precisely he was “titolare di una borsa per l’estero dell’Istituto Nazionale di Alta Matematica” and “titolare di un Assegno di Ricerca dell’Istituto Nazionale di Alta Matematica”. The second author was supported by Spanish Ministerio de Ciencia e Innovación Project PID2019-104844GB-100
- Communicated by: Claudia Polini
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 1493-1503
- MSC (2020): Primary 13D40, 13H15, 13A30
- DOI: https://doi.org/10.1090/proc/15819
- MathSciNet review: 4375739