A note on exhaustion of hyperbolic complex manifolds
HTML articles powered by AMS MathViewer
- by Ninh Van Thu and Trinh Huy Vu
- Proc. Amer. Math. Soc. 150 (2022), 2083-2093
- DOI: https://doi.org/10.1090/proc/15907
- Published electronically: February 17, 2022
- PDF | Request permission
Abstract:
The purpose of this article is to investigate a hyperbolic complex manifold $M$ exhausted by a pseudoconvex domain $\Omega$ in $\mathbb {C}^n$ via an exhausting sequence $\{f_j\colon \Omega \to M\}$ such that $f_j^{-1}(a)$ converges to a boundary point $\xi _0 \in \partial \Omega$ for some point $a\in M$.References
- Taeyong Ahn, Hervé Gaussier, and Kang-Tae Kim, Positivity and completeness of invariant metrics, J. Geom. Anal. 26 (2016), no. 2, 1173–1185. MR 3472832, DOI 10.1007/s12220-015-9587-5
- François Berteloot, Characterization of models in $\mathbf C^2$ by their automorphism groups, Internat. J. Math. 5 (1994), no. 5, 619–634. MR 1297410, DOI 10.1142/S0129167X94000322
- François Berteloot, Méthodes de changement d’échelles en analyse complexe, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 3, 427–483 (French, with English and French summaries). MR 2246412, DOI 10.5802/afst.1127
- David Catlin, Boundary invariants of pseudoconvex domains, Ann. of Math. (2) 120 (1984), no. 3, 529–586. MR 769163, DOI 10.2307/1971087
- Do Duc Thai and Ninh Van Thu, Characterization of domains in $\Bbb C^n$ by their noncompact automorphism groups, Nagoya Math. J. 196 (2009), 135–160. MR 2591094, DOI 10.1017/S002776300000982X
- Do Duc Thai and Tran Hue Minh, Generalizations of the theorems of Cartan and Greene-Krantz to complex manifolds, Illinois J. Math. 48 (2004), no. 4, 1367–1384. MR 2114162
- Fu Sheng Deng and Xu Jun Zhang, Fridman’s invariant, squeezing functions, and exhausting domains, Acta Math. Sin. (Engl. Ser.) 35 (2019), no. 10, 1723–1728. MR 4007656, DOI 10.1007/s10114-019-8501-7
- John Erik Fornæss, Short $\Bbb C^k$, Complex analysis in several variables—Memorial Conference of Kiyoshi Oka’s Centennial Birthday, Adv. Stud. Pure Math., vol. 42, Math. Soc. Japan, Tokyo, 2004, pp. 95–108. MR 2087041, DOI 10.2969/aspm/04210095
- John Erik Fornaess and Edgar Lee Stout, Polydiscs in complex manifolds, Math. Ann. 227 (1977), no. 2, 145–153. MR 435441, DOI 10.1007/BF01350191
- B. L. Fridman, Biholomorphic invariants of a hyperbolic manifold and some applications, Trans. Amer. Math. Soc. 276 (1983), no. 2, 685–698. MR 688970, DOI 10.1090/S0002-9947-1983-0688970-2
- B. L. Fridman, A universal exhausting domain, Proc. Amer. Math. Soc. 98 (1986), no. 2, 267–270. MR 854031, DOI 10.1090/S0002-9939-1986-0854031-0
- Buma L. Fridman and Daowei Ma, On exhaustion of domains, Indiana Univ. Math. J. 44 (1995), no. 2, 385–395. MR 1355403, DOI 10.1512/iumj.1995.44.1992
- Robert E. Greene and Steven G. Krantz, Biholomorphic self-maps of domains, Complex analysis, II (College Park, Md., 1985–86) Lecture Notes in Math., vol. 1276, Springer, Berlin, 1987, pp. 136–207. MR 922321, DOI 10.1007/BFb0078959
- Bingyuan Liu, Two applications of the Schwarz lemma, Pacific J. Math. 296 (2018), no. 1, 141–153. MR 3803725, DOI 10.2140/pjm.2018.296.141
- Ninh Van Thu and Nguyen Quang Dieu, Some properties of $h$-extendible domains in $\Bbb {C}^{n+1}$, J. Math. Anal. Appl. 485 (2020), no. 2, 123810, 14. MR 4050680, DOI 10.1016/j.jmaa.2019.123810
- Van Thu Ninh, Thi Lan Huong Nguyen, Quang Hung Tran, and Hyeseon Kim, On the automorphism groups of finite multitype models in $\Bbb C^n$, J. Geom. Anal. 29 (2019), no. 1, 428–450. MR 3897022, DOI 10.1007/s12220-018-9999-0
- Ji Ye Yu, Peak functions on weakly pseudoconvex domains, Indiana Univ. Math. J. 43 (1994), no. 4, 1271–1295. MR 1322619, DOI 10.1512/iumj.1994.43.43055
- Ji Ye Yu, Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains, Trans. Amer. Math. Soc. 347 (1995), no. 2, 587–614. MR 1276938, DOI 10.1090/S0002-9947-1995-1276938-5
Bibliographic Information
- Ninh Van Thu
- Affiliation: Department of Mathematics, Vietnam National University at Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
- Address at time of publication: School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, No. 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
- MR Author ID: 853151
- Email: thu.ninhvan@hust.edu.vn, thunv@vnu.edu.vn
- Trinh Huy Vu
- Affiliation: Department of Mathematics, Vietnam National University at Hanoi, 334 Nguyen Trai, Thanh Xuan, Hanoi, Vietnam
- ORCID: 0000-0003-1766-8181
- Email: trinhhuyvu1508@gmail.com
- Received by editor(s): December 22, 2020
- Received by editor(s) in revised form: July 29, 2021, and August 2, 2021
- Published electronically: February 17, 2022
- Additional Notes: The first author would like to thank the VIASM for financial support and hospitality.
- Communicated by: Harold P. Boas
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 2083-2093
- MSC (2020): Primary 32H02; Secondary 32M05, 32F18
- DOI: https://doi.org/10.1090/proc/15907
- MathSciNet review: 4392342