Primitive Lie PI-algebras
HTML articles powered by AMS MathViewer
- by Miguel Cabrera and Antonio Fernández López
- Proc. Amer. Math. Soc. 150 (2022), 2277-2285
- DOI: https://doi.org/10.1090/proc/15744
- Published electronically: March 4, 2022
- PDF | Request permission
Abstract:
A Lie algebra $L$ is called primitive if it is prime, nondegenerate, and contains a nonzero Jordan element $a$ such that the attached Jordan algebra $L_a$ is primitive. In this paper we prove that every primitive Lie PI-algebra over a field of zero characteristic is simple and finite-dimensional over its centroid.References
- José A. Anquela, Fernando Montaner, and Teresa Cortés, On primitive Jordan algebras, J. Algebra 163 (1994), no. 3, 663–674. MR 1265856, DOI 10.1006/jabr.1994.1036
- José A. Anquela and Teresa Cortés, Local and subquotient inheritance of simplicity in Jordan systems, J. Algebra 240 (2001), no. 2, 680–704. MR 1841352, DOI 10.1006/jabr.2000.8693
- Juri A. Bahturin, Simple Lie algebras satisfying a nontrivial identity, Serdica 2 (1976), no. 3, 241–246. MR 447358
- Yuri Bahturin, On Lie subalgebras of associative PI-algebras, J. Algebra 67 (1980), no. 2, 257–271. MR 602062, DOI 10.1016/0021-8693(80)90159-3
- Yu. A. Bahturin, Identical relations in Lie algebras, VNU Science Press, b.v., Utrecht, 1987. Translated from the Russian by Bahturin. MR 886063
- W. E. Baxter and W. S. Martindale III, Central closure of semiprime nonassociative rings, Comm. Algebra 7 (1979), no. 11, 1103–1132. MR 535925, DOI 10.1080/00927877908822394
- Georgia Benkart, On inner ideals and ad-nilpotent elements of Lie algebras, Trans. Amer. Math. Soc. 232 (1977), 61–81. MR 466242, DOI 10.1090/S0002-9947-1977-0466242-6
- Miguel Cabrera, Ideals which memorize the extended centroid, J. Algebra Appl. 1 (2002), no. 3, 281–288. MR 1932152, DOI 10.1142/S0219498802000185
- M. Cabrera, A. Fernández López, A. Yu. Golubkov, and A. Moreno, Algebras whose multiplication algebra is PI or GPI, J. Algebra 459 (2016), 213–237. MR 3503972, DOI 10.1016/j.jalgebra.2016.04.009
- M. Cabrera and Amir A. Mohammed, Extended centroid and central closure of the multiplication algebra, Comm. Algebra 27 (1999), no. 12, 5723–5736. MR 1726273, DOI 10.1080/00927879908826787
- Miguel Cabrera García and Ángel Rodríguez Palacios, Non-associative normed algebras. Vol. 1, Encyclopedia of Mathematics and its Applications, vol. 154, Cambridge University Press, Cambridge, 2014. The Vidav-Palmer and Gelfand-Naimark theorems. MR 3242640, DOI 10.1017/CBO9781107337763
- P. M. Cohn, Further algebra and applications, Springer-Verlag London, Ltd., London, 2003. MR 1953987, DOI 10.1007/978-1-4471-0039-3
- Antonio Fernández López, Jordan structures in Lie algebras, Mathematical Surveys and Monographs, vol. 240, American Mathematical Society, Providence, RI, 2019. MR 3967698, DOI 10.1016/j.akcej.2019.02.009
- Antonio Fernández López and Artem Yu. Golubkov, Lie algebras with an algebraic adjoint representation revisited, Manuscripta Math. 140 (2013), no. 3-4, 363–376. MR 3019131, DOI 10.1007/s00229-012-0546-1
- A. A. Kucherov, O. A. Pikhtil′kova, and S. A. Pikhtil′kov, On primitive Lie algebras, Fundam. Prikl. Mat. 17 (2011/12), no. 2, 177–182 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 186 (2012), no. 4, 651–654. MR 2904291, DOI 10.1007/s10958-012-1011-0
- S. A. Pikhtilkov, Structural theory of special Lie algebras, J. Math. Sci. (N.Y.) 136 (2006), no. 4, 4090–4115. Algebra. MR 2272927, DOI 10.1007/s10958-006-0222-7
- E. I. Zel′manov, Absolute zero divisors and algebraic Jordan algebras, Sibirsk. Mat. Zh. 23 (1982), no. 6, 100–116, 206 (Russian). MR 682911
- E. I. Zel′manov, Lie algebras with algebraic associated representation, Mat. Sb. (N.S.) 121(163) (1983), no. 4, 545–561 (Russian). MR 716113
- E. I. Zel′manov, Prime Jordan algebras. II, Sibirsk. Mat. Zh. 24 (1983), no. 1, 89–104, 192 (Russian). MR 688595
Bibliographic Information
- Miguel Cabrera
- Affiliation: Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, Spain
- MR Author ID: 250849
- ORCID: 0000-0003-4136-1307
- Email: cabrera@ugr.es
- Antonio Fernández López
- Affiliation: Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, Spain
- MR Author ID: 66255
- Email: emalfer@uma.es
- Received by editor(s): June 8, 2020
- Received by editor(s) in revised form: July 16, 2021, and July 20, 2021
- Published electronically: March 4, 2022
- Additional Notes: The first author was supported in part by the Junta de Andalucía and Spanish government grants FQM199 and MTMT2016-76327-C3-2-P. The second author was supported by the MEC and Fondos FEDER, MTM2017-84194-P
- Communicated by: Martin Liebeck
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 2277-2285
- MSC (2020): Primary 17B01, 17B05; Secondary 17C05, 17C20
- DOI: https://doi.org/10.1090/proc/15744
- MathSciNet review: 4399248
Dedicated: Dedicated to the memory of Ottmar Loos