A lower bound for $L_2$ length of second fundamental form on minimal hypersurfaces
HTML articles powered by AMS MathViewer
- by Jianquan Ge and Fagui Li
- Proc. Amer. Math. Soc. 150 (2022), 2671-2684
- DOI: https://doi.org/10.1090/proc/15835
- Published electronically: March 16, 2022
- PDF | Request permission
Abstract:
We prove a weak version of the Perdomo Conjecture, namely, there is a positive constant $\delta (n)>0$ depending only on $n$ such that on any closed embedded, non-totally geodesic, minimal hypersurface $M^n$ in $\mathbb {S}^{n+1}$, \begin{equation*} \int _{M}S \geq \delta (n)\operatorname {Vol}(M^n), \end{equation*} where $S$ is the squared length of the second fundamental form of $M^n$. The Perdomo Conjecture asserts that $\delta (n)=n$ which is still open in general. As byproducts, we also obtain some integral inequalities and Simons-type pinching results on closed embedded (or immersed) minimal hypersurfaces, with the first positive eigenvalue $\lambda _1(M)$ of the Laplacian involved.References
- Luis J. Alías, Abdênago Barros, and Aldir Brasil Jr., A spectral characterization of the $H(r)$-torus by the first stability eigenvalue, Proc. Amer. Math. Soc. 133 (2005), no. 3, 875–884. MR 2113939, DOI 10.1090/S0002-9939-04-07559-8
- Luis J. Alías, Aldir Brasil Jr., and Oscar Perdomo, On the stability index of hypersurfaces with constant mean curvature in spheres, Proc. Amer. Math. Soc. 135 (2007), no. 11, 3685–3693. MR 2336585, DOI 10.1090/S0002-9939-07-08886-7
- F. J. Almgren Jr., Some interior regularity theorems for minimal surfaces and an extension of Bernstein’s theorem, Ann. of Math. (2) 84 (1966), 277–292. MR 200816, DOI 10.2307/1970520
- Simon Brendle, Embedded minimal tori in $S^3$ and the Lawson conjecture, Acta Math. 211 (2013), no. 2, 177–190. MR 3143888, DOI 10.1007/s11511-013-0101-2
- Simon Brendle, Minimal surfaces in $S^3$: a survey of recent results, Bull. Math. Sci. 3 (2013), no. 1, 133–171. MR 3061135, DOI 10.1007/s13373-013-0034-2
- Eugenio Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geometry 1 (1967), 111–125. MR 233294
- Thomas E. Cecil, Quo-Shin Chi, and Gary R. Jensen, Isoparametric hypersurfaces with four principal curvatures, Ann. of Math. (2) 166 (2007), no. 1, 1–76. MR 2342690, DOI 10.4007/annals.2007.166.1
- Thomas E. Cecil and Patrick J. Ryan, Geometry of hypersurfaces, Springer Monographs in Mathematics, Springer, New York, 2015. MR 3408101, DOI 10.1007/978-1-4939-3246-7
- Shaoping Chang, On minimal hypersurfaces with constant scalar curvatures in $S^4$, J. Differential Geom. 37 (1993), no. 3, 523–534. MR 1217159
- Qing-Ming Cheng and Susumu Ishikawa, A characterization of the Clifford torus, Proc. Amer. Math. Soc. 127 (1999), no. 3, 819–828. MR 1636934, DOI 10.1090/S0002-9939-99-05088-1
- Qing-ming Cheng, Guoxin Wei, and Yuting Zeng, Area of minimal hypersurfaces in the unit sphere, Asian J. Math. 25 (2021), no. 2, 183–194. MR 4334413, DOI 10.4310/AJM.2021.v25.n2.a2
- Shiu Yuen Cheng, Peter Li, and Shing-Tung Yau, Heat equations on minimal submanifolds and their applications, Amer. J. Math. 106 (1984), no. 5, 1033–1065. MR 761578, DOI 10.2307/2374272
- S. S. Chern, Minimal submanifolds in a Riemannian manifold, University of Kansas, Department of Mathematics Technical Report 19 (New Series), University of Kansas, Lawrence, Kan., 1968. MR 0248648
- S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 59–75. MR 0273546
- Q. S. Chi, The isoparametric story, a heritage of Élie Cartan, Proceedings of the International Consortium of Chinese Mathematicians, 2018, International Press of Boston (2020), 197–260.
- Quo-Shin Chi, Isoparametric hypersurfaces with four principal curvatures, II, Nagoya Math. J. 204 (2011), 1–18. MR 2863363, DOI 10.1215/00277630-1431813
- Quo-Shin Chi, Isoparametric hypersurfaces with four principal curvatures, III, J. Differential Geom. 94 (2013), no. 3, 469–504. MR 3080489
- Quo-Shin Chi, Isoparametric hypersurfaces with four principal curvatures, IV, J. Differential Geom. 115 (2020), no. 2, 225–301. MR 4100704, DOI 10.4310/jdg/1589853626
- Jaigyoung Choe, Minimal surfaces in ${\Bbb S}^3$ and Yau’s conjecture, Proceedings of the Tenth International Workshop on Differential Geometry, Kyungpook Nat. Univ., Taegu, 2006, pp. 183–188. MR 2215803
- Jaigyoung Choe and Marc Soret, First eigenvalue of symmetric minimal surfaces in $\Bbb S^3$, Indiana Univ. Math. J. 58 (2009), no. 1, 269–281. MR 2504411, DOI 10.1512/iumj.2009.58.3192
- Hyeong In Choi and Ai Nung Wang, A first eigenvalue estimate for minimal hypersurfaces, J. Differential Geom. 18 (1983), no. 3, 559–562. MR 723817
- Sebastião C. de Almeida and Fabiano G. B. Brito, Closed $3$-dimensional hypersurfaces with constant mean curvature and constant scalar curvature, Duke Math. J. 61 (1990), no. 1, 195–206. MR 1068385, DOI 10.1215/S0012-7094-90-06109-5
- S. C. de Almeida, F. G. B. Brito, M. Scherfner, and S. Weiss, On CMC hypersurfaces in $\Bbb S^{n+1}$ with constant Gauß-Kronecker curvature, Adv. Geom. 18 (2018), no. 2, 187–192. MR 3785420, DOI 10.1515/advgeom-2017-0054
- Qintao Deng, Huiling Gu, and Qiaoyu Wei, Closed Willmore minimal hypersurfaces with constant scalar curvature in $\Bbb {S}^5(1)$ are isoparametric, Adv. Math. 314 (2017), 278–305. MR 3658718, DOI 10.1016/j.aim.2017.05.002
- Qi Ding and Y. L. Xin, On Chern’s problem for rigidity of minimal hypersurfaces in the spheres, Adv. Math. 227 (2011), no. 1, 131–145. MR 2782189, DOI 10.1016/j.aim.2011.01.018
- Josef Dorfmeister and Erhard Neher, Isoparametric hypersurfaces, case $g=6,\;m=1$, Comm. Algebra 13 (1985), no. 11, 2299–2368. MR 807479, DOI 10.1080/00927878508823278
- J. Q. Ge, Problems related to isoparametric theory, G. Tian, Q. Han, and Z. L. Zhang (eds.), Surveys in Geometric Analysis 2019, Science Press, Beijing, 2020, pp. 71–85.
- J. Q. Ge and F. G. Li, Integral-Einstein hypersurfaces in spheres, arXiv:2101.03753, 2021.
- Jianquan Ge and Zizhou Tang, Chern conjecture and isoparametric hypersurfaces, Differential geometry, Adv. Lect. Math. (ALM), vol. 22, Int. Press, Somerville, MA, 2012, pp. 49–60. MR 3076049
- Juan-Ru Gu, Hong-Wei Xu, Zhi-Yuan Xu, and En-Tao Zhao, A survey on rigidity problems in geometry and topology of submanifolds, Proceedings of the Sixth International Congress of Chinese Mathematicians. Vol. II, Adv. Lect. Math. (ALM), vol. 37, Int. Press, Somerville, MA, 2017, pp. 79–99. MR 3701929
- Wu-Yi Hsiang, Minimal cones and the spherical Bernstein problem. I, Ann. of Math. (2) 118 (1983), no. 1, 61–73. MR 707161, DOI 10.2307/2006954
- Tom Ilmanen and Brian White, Sharp lower bounds on density for area-minimizing cones, Camb. J. Math. 3 (2015), no. 1-2, 1–18. MR 3356355, DOI 10.4310/CJM.2015.v3.n1.a1
- Stefan Immervoll, On the classification of isoparametric hypersurfaces with four distinct principal curvatures in spheres, Ann. of Math. (2) 168 (2008), no. 3, 1011–1024. MR 2456889, DOI 10.4007/annals.2008.168.1011
- H. Blaine Lawson Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2) 89 (1969), 187–197. MR 238229, DOI 10.2307/1970816
- H. Blaine Lawson Jr., The unknottedness of minimal embeddings, Invent. Math. 11 (1970), 183–187. MR 287447, DOI 10.1007/BF01404649
- F. G. Li, A note on the Chern Conjecture in dimension four, arXiv:2104.08104, 2021.
- Li Lei, Hongwei Xu, and Zhiyuan Xu, On the generalized Chern conjecture for hypersurfaces with constant mean curvature in a sphere, Sci. China Math. 64 (2021), no. 7, 1493–1504. MR 4280366, DOI 10.1007/s11425-020-1841-y
- Jun Min Lin and Chang Yu Xia, Global pinching theorems for even-dimensional minimal submanifolds in the unit spheres, Math. Z. 201 (1989), no. 3, 381–389. MR 999735, DOI 10.1007/BF01214903
- Reiko Miyaoka, Isoparametric hypersurfaces with $(g,m)=(6,2)$, Ann. of Math. (2) 177 (2013), no. 1, 53–110. MR 2999038, DOI 10.4007/annals.2013.177.1.2
- Reiko Miyaoka, Errata of “Isoparametric hypersurfaces with $(g,m)=(6,2)$” [ MR2999038], Ann. of Math. (2) 183 (2016), no. 3, 1057–1071. MR 3488743, DOI 10.4007/annals.2016.183.3.7
- Katsumi Nomizu and Brian Smyth, On the Gauss mapping for hypersurfaces of constant mean curvature in the sphere, Comment. Math. Helv. 44 (1969), 484–490. MR 257939, DOI 10.1007/BF02564548
- Tominosuke Ôtsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970), 145–173. MR 264565, DOI 10.2307/2373502
- Chia-Kuei Peng and Chuu-Lian Terng, Minimal hypersurfaces of spheres with constant scalar curvature, Seminar on minimal submanifolds, Ann. of Math. Stud., vol. 103, Princeton Univ. Press, Princeton, NJ, 1983, pp. 177–198. MR 795235
- Chia Kuei Peng and Chuu-Lian Terng, The scalar curvature of minimal hypersurfaces in spheres, Math. Ann. 266 (1983), no. 1, 105–113. MR 722930, DOI 10.1007/BF01458707
- Oscar Perdomo, Low index minimal hypersurfaces of spheres, Asian J. Math. 5 (2001), no. 4, 741–749. MR 1913819, DOI 10.4310/AJM.2001.v5.n4.a8
- Oscar Perdomo, On the average of the scalar curvature of minimal hypersurfaces of spheres with low stability index, Illinois J. Math. 48 (2004), no. 2, 559–565. MR 2085426
- Oscar Perdomo, Ridigity of minimal hypersurfaces of spheres with two principal curvatures, Arch. Math. (Basel) 82 (2004), no. 2, 180–184. MR 2047672, DOI 10.1007/s00013-003-4834-6
- Oscar M. Perdomo and Guoxin Wei, $n$-dimensional area of minimal rotational hypersurfaces in spheres, Nonlinear Anal. 125 (2015), 241–250. MR 3373582, DOI 10.1016/j.na.2015.05.017
- Mike Scherfner and Simon Weiss, Towards a proof of the Chern conjecture for isoparametric hypersurfaces in spheres, 33. Süddeutsches Kolloquium über Differentialgeometrie, Institut für Diskrete Mathematik und Geometrie. Technische Universität Wien, Vienna, 2008, pp. 1–13. MR 2508732
- Mike Scherfner, Simon Weiss, and Shing-Tung Yau, A review of the Chern conjecture for isoparametric hypersurfaces in spheres, Advances in geometric analysis, Adv. Lect. Math. (ALM), vol. 21, Int. Press, Somerville, MA, 2012, pp. 175–187. MR 3077256
- R. Schoen and S.-T. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. Lecture notes prepared by Wei Yue Ding, Kung Ching Chang [Gong Qing Zhang], Jia Qing Zhong and Yi Chao Xu; Translated from the Chinese by Ding and S. Y. Cheng; With a preface translated from the Chinese by Kaising Tso. MR 1333601
- Chun Li Shen, A global pinching theorem of minimal hypersurfaces in the sphere, Proc. Amer. Math. Soc. 105 (1989), no. 1, 192–198. MR 973845, DOI 10.1090/S0002-9939-1989-0973845-2
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 233295, DOI 10.2307/1970556
- Young Jin Suh and Hae Young Yang, The scalar curvature of minimal hypersurfaces in a unit sphere, Commun. Contemp. Math. 9 (2007), no. 2, 183–200. MR 2313512, DOI 10.1142/S021919970700237X
- Zizhou Tang, Dongyi Wei, and Wenjiao Yan, A sufficient condition for a hypersurface to be isoparametric, Tohoku Math. J. (2) 72 (2020), no. 4, 493–505. MR 4194182, DOI 10.2748/tmj.20190611
- Zizhou Tang, Yuquan Xie, and Wenjiao Yan, Isoparametric foliation and Yau conjecture on the first eigenvalue, II, J. Funct. Anal. 266 (2014), no. 10, 6174–6199. MR 3188712, DOI 10.1016/j.jfa.2014.02.024
- Zizhou Tang and Wenjiao Yan, Isoparametric foliation and Yau conjecture on the first eigenvalue, J. Differential Geom. 94 (2013), no. 3, 521–540. MR 3080491
- Z. Z. Tang and W. J. Yan, On the Chern conjecture for isoparametric hypersurfaces, arXiv:2001.10134, 2020.
- C. P. Wang and P. Wang, On embedded minimal hypersurfaces in $\mathbb {S}^{n+1}$ with symmetries, arXiv:2010.16261, 2020.
- Si-Ming Wei and Hong-Wei Xu, Scalar curvature of minimal hypersurfaces in a sphere, Math. Res. Lett. 14 (2007), no. 3, 423–432. MR 2318646, DOI 10.4310/MRL.2007.v14.n3.a7
- Hong Wei Xu, $L_{n/2}$-pinching theorems for submanifolds with parallel mean curvature in a sphere, J. Math. Soc. Japan 46 (1994), no. 3, 503–515. MR 1276835, DOI 10.2969/jmsj/04630503
- Hongwei Xu and Zhiyuan Xu, On Chern’s conjecture for minimal hypersurfaces and rigidity of self-shrinkers, J. Funct. Anal. 273 (2017), no. 11, 3406–3425. MR 3706607, DOI 10.1016/j.jfa.2017.08.020
- Hongcang Yang and Qing-Ming Cheng, Chern’s conjecture on minimal hypersurfaces, Math. Z. 227 (1998), no. 3, 377–390. MR 1612653, DOI 10.1007/PL00004382
- Shing Tung Yau, Problem section, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 669–706. MR 645762
- Shing-Tung Yau, S. S. Chern, as my teacher, Chern—a great geometer of the twentieth century, Int. Press, Hong Kong, 1992, pp. 271–274. MR 1201368, DOI 10.1145/143164.143364
- Qin Zhang, The pinching constant of minimal hypersurfaces in the unit spheres, Proc. Amer. Math. Soc. 138 (2010), no. 5, 1833–1841. MR 2587468, DOI 10.1090/S0002-9939-09-10251-4
Bibliographic Information
- Jianquan Ge
- Affiliation: School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, People’s Republic of China
- Email: jqge@bnu.edu.cn
- Fagui Li
- Affiliation: School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, People’s Republic of China
- Email: faguili@mail.bnu.edu.cn
- Received by editor(s): July 11, 2021
- Received by editor(s) in revised form: September 8, 2021
- Published electronically: March 16, 2022
- Additional Notes: The first author was partially supported by Beijing Natural Science Foundation (No. Z190003).
The second author is the corresponding author. - Communicated by: Jiaping Wang
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 2671-2684
- MSC (2020): Primary 53C42, 53C24, 53C65
- DOI: https://doi.org/10.1090/proc/15835
- MathSciNet review: 4399280