On the minimal number of translated points in contact lens spaces
HTML articles powered by AMS MathViewer
- by Simon Allais
- Proc. Amer. Math. Soc. 150 (2022), 2685-2693
- DOI: https://doi.org/10.1090/proc/15863
- Published electronically: March 7, 2022
- PDF | Request permission
Abstract:
In this article, we prove that every contactomorphism of any standard contact lens space of dimension $2n-1$ that is contact-isotopic to the identity has at least $2n$ translated points with respect to the standard contact form. This sharp lower bound refines a result of Granja-Karshon-Pabiniak-Sandon [Givental’s non-linear Maslov index on lens spaces arXiv:1704.05827, 2017] and confirms a conjecture of Sandon.References
- Peter Albers, Urs Fuchs, and Will J. Merry, Orderability and the Weinstein conjecture, Compos. Math. 151 (2015), no. 12, 2251–2272. MR 3433886, DOI 10.1112/S0010437X15007642
- Simon Allais, On periodic points of Hamiltonian diffeomorphisms of $\mathbb {C}\mathrm {P}^d$ via generating functions, J. Symplectic Geom. 20 (2022), no. 1, to appear.
- Simon Allais, On the Hofer-Zehnder conjecture on $\mathbb {C}\mathrm {P}^d$ via generating functions (with an appendix by Egor Shelukhin), arXiv:2010.14172, 2020.
- Octav Cornea, Gregory Lupton, John Oprea, and Daniel Tanré, Lusternik-Schnirelmann category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society, Providence, RI, 2003. MR 1990857, DOI 10.1090/surv/103
- Edward Fadell and Sufian Husseini, Category weight and Steenrod operations, Bol. Soc. Mat. Mexicana (2) 37 (1992), no. 1-2, 151–161. Papers in honor of José Adem (Spanish). MR 1317569, DOI 10.1016/0165-1765(91)90092-y
- Barry Fortune, A symplectic fixed point theorem for $\textbf {C}\textrm {P}^n$, Invent. Math. 81 (1985), no. 1, 29–46. MR 796189, DOI 10.1007/BF01388770
- A. B. Givental′, Nonlinear generalization of the Maslov index, Theory of singularities and its applications, Adv. Soviet Math., vol. 1, Amer. Math. Soc., Providence, RI, 1990, pp. 71–103. MR 1089671
- Gustavo Granja, Yael Karshon, Milena Pabiniak, and Sheila Sandon, Givental’s non-linear Maslov index on lens spaces arXiv:1704.05827, 2017
- M. A. Krasnosel′skiĭ, On special coverings of a finite-dimensional sphere, Dokl. Akad. Nauk SSSR (N.S.) 103 (1955), 961–964 (Russian). MR 0081454
- Matthias Meiwes and Kathrin Naef, Translated points on hypertight contact manifolds, J. Topol. Anal. 10 (2018), no. 2, 289–322. MR 3809590, DOI 10.1142/S1793525318500097
- Sheila Sandon, A Morse estimate for translated points of contactomorphisms of spheres and projective spaces, Geom. Dedicata 165 (2013), 95–110. MR 3079344, DOI 10.1007/s10711-012-9741-1
- David Théret, Rotation numbers of Hamiltonian isotopies in complex projective spaces, Duke Math. J. 94 (1998), no. 1, 13–27. MR 1635892, DOI 10.1215/S0012-7094-98-09402-9
Bibliographic Information
- Simon Allais
- Affiliation: Simon Allais, Université de Paris, IMJ-PRG, 8 place Aurélie de Nemours, 75013 Paris, France
- MR Author ID: 1296344
- Email: simon.allais@imj-prg.fr
- Received by editor(s): March 30, 2021
- Received by editor(s) in revised form: September 16, 2021, and September 21, 2021
- Published electronically: March 7, 2022
- Communicated by: Guofang Wei
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 2685-2693
- MSC (2020): Primary 53D10, 57R17, 58E05
- DOI: https://doi.org/10.1090/proc/15863
- MathSciNet review: 4399281