Mean ergodic composition operators on spaces of smooth functions and distributions
HTML articles powered by AMS MathViewer
- by Thomas Kalmes and Daniel Santacreu
- Proc. Amer. Math. Soc. 150 (2022), 2603-2616
- DOI: https://doi.org/10.1090/proc/15894
- Published electronically: March 16, 2022
- PDF | Request permission
Abstract:
We investigate (uniform) mean ergodicity of weighted composition operators on the space of smooth functions and the space of distributions, both over an open subset of the real line. Among other things, we prove that a composition operator with a real analytic diffeomorphic symbol is mean ergodic on the space of distributions if and only if it is periodic with period 2. Our results are based on a characterization of mean ergodicity in terms of Cesàro boundedness and a growth property of the orbits for operators on Montel spaces which is of independent interest.References
- Angela A. Albanese, José Bonet, and Werner J. Ricker, Mean ergodic operators in Fréchet spaces, Ann. Acad. Sci. Fenn. Math. 34 (2009), no. 2, 401–436. MR 2553804
- Angela A. Albanese, José Bonet, and Werner J. Ricker, On mean ergodic operators, Vector measures, integration and related topics, Oper. Theory Adv. Appl., vol. 201, Birkhäuser Verlag, Basel, 2010, pp. 1–20. MR 2743490
- María J. Beltrán-Meneu, Dynamics of weighted composition operators on weighted Banach spaces of entire functions, J. Math. Anal. Appl. 492 (2020), no. 1, 124422, 16. MR 4136643, DOI 10.1016/j.jmaa.2020.124422
- María J. Beltrán-Meneu, M. Carmen Gómez-Collado, Enrique Jordá, and David Jornet, Mean ergodic composition operators on Banach spaces of holomorphic functions, J. Funct. Anal. 270 (2016), no. 12, 4369–4385. MR 3490769, DOI 10.1016/j.jfa.2016.03.003
- María J. Beltrán-Meneu, M. Carmen Gómez-Collado, Enrique Jordá, and David Jornet, Mean ergodicity of weighted composition operators on spaces of holomorphic functions, J. Math. Anal. Appl. 444 (2016), no. 2, 1640–1651. MR 3535780, DOI 10.1016/j.jmaa.2016.07.039
- José Bonet, Ben de Pagter, and Werner J. Ricker, Mean ergodic operators and reflexive Fréchet lattices, Proc. Roy. Soc. Edinburgh Sect. A 141 (2011), no. 5, 897–920. MR 2838360, DOI 10.1017/S0308210510000314
- José Bonet and PawełDomański, A note on mean ergodic composition operators on spaces of holomorphic functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 105 (2011), no. 2, 389–396. MR 2826716, DOI 10.1007/s13398-011-0009-7
- José Bonet and PawełDomański, Power bounded composition operators on spaces of analytic functions, Collect. Math. 62 (2011), no. 1, 69–83. MR 2772328, DOI 10.1007/s13348-010-0005-9
- Carmen Fernández, Antonio Galbis, and Enrique Jordá, Dynamics and spectra of composition operators on the Schwartz space, J. Funct. Anal. 274 (2018), no. 12, 3503–3530. MR 3787598, DOI 10.1016/j.jfa.2017.11.005
- M. C. Gómez-Collado, E. Jordá, and D. Jornet, Power bounded composition operators on spaces of meromorphic functions, Topology Appl. 203 (2016), 141–146. MR 3481078, DOI 10.1016/j.topol.2015.12.082
- Shi-An Han and Ze-Hua Zhou, Mean ergodicity of composition operators on Hardy space, Proc. Indian Acad. Sci. Math. Sci. 129 (2019), no. 4, Paper No. 45, 10. MR 3959304, DOI 10.1007/s12044-019-0476-x
- Lars Hörmander, The analysis of linear partial differential operators. I, Classics in Mathematics, Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis; Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]. MR 1996773, DOI 10.1007/978-3-642-61497-2
- J. Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
- Warren P. Johnson, The curious history of Faà di Bruno’s formula, Amer. Math. Monthly 109 (2002), no. 3, 217–234. MR 1903577, DOI 10.2307/2695352
- Enrique Jordá and Alberto Rodríguez-Arenas, Ergodic properties of composition operators on Banach spaces of analytic functions, J. Math. Anal. Appl. 486 (2020), no. 1, 123891, 14. MR 4057007, DOI 10.1016/j.jmaa.2020.123891
- David Jornet, Daniel Santacreu, and Pablo Sevilla-Peris, Mean ergodic composition operators in spaces of homogeneous polynomials, J. Math. Anal. Appl. 483 (2020), no. 1, 123582, 11. MR 4019102, DOI 10.1016/j.jmaa.2019.123582
- David Jornet, Daniel Santacreu, and Pablo Sevilla-Peris, Mean ergodic composition operators on spaces of holomorphic functions on a Banach space, J. Math. Anal. Appl. 500 (2021), no. 2, Paper No. 125139, 16. MR 4231525, DOI 10.1016/j.jmaa.2021.125139
- T. Kalmes, Power bounded weighted composition operators on function spaces defined by local properties, J. Math. Anal. Appl. 471 (2019), no. 1-2, 211–238. MR 3906322, DOI 10.1016/j.jmaa.2018.10.073
- Thomas Kalmes, Topologizable and power bounded weighted composition operators on spaces of distributions, Ann. Polon. Math. 125 (2020), no. 2, 139–154. MR 4166510, DOI 10.4064/ap200211-11-5
- Steven G. Krantz and Harold R. Parks, A primer of real analytic functions, Basler Lehrbücher [Basel Textbooks], vol. 4, Birkhäuser Verlag, Basel, 1992. MR 1182792, DOI 10.1007/978-3-0348-7644-5
- Ulrich Krengel, Ergodic theorems, De Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel. MR 797411, DOI 10.1515/9783110844641
- Werkaferahu Seyoum, Tesfa Mengestie, and José Bonet, Mean ergodic composition operators on generalized Fock spaces, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 1, Paper No. 6, 11. MR 4039686, DOI 10.1007/s13398-019-00738-w
Bibliographic Information
- Thomas Kalmes
- Affiliation: Chemnitz University of Technology, Faculty of Mathematics, 09107 Chemnitz, Germany
- MR Author ID: 717771
- ORCID: 0000-0001-7542-1334
- Email: thomas.kalmes@math.tu-chemnitz.de
- Daniel Santacreu
- Affiliation: Instituto Universitario Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, Camino de Vera, s/n, 46701 Valencia, Spain
- MR Author ID: 1343758
- ORCID: 0000-0002-2607-0248
- Email: dasanfe5@posgrado.upv.es
- Received by editor(s): June 28, 2021
- Received by editor(s) in revised form: October 21, 2021
- Published electronically: March 16, 2022
- Additional Notes: The research of the second author was partially supported by the project GV Prometeo 2017/102
- Communicated by: Javad Mashreghi
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 2603-2616
- MSC (2020): Primary 47B33, 47B38, 47A35
- DOI: https://doi.org/10.1090/proc/15894
- MathSciNet review: 4399275