## Irreducible components of two-row Springer fibers for all classical types

HTML articles powered by AMS MathViewer

- by Mee Seong Im, Chun-Ju Lai and Arik Wilbert PDF
- Proc. Amer. Math. Soc.
**150**(2022), 2415-2432 Request permission

## Abstract:

We give an explicit description of the irreducible components of two-row Springer fibers for all classical types using cup diagrams. Cup diagrams can be used to label the irreducible components of two-row Springer fibers. We use these diagrams to explicitly write down relations between the vector spaces of the flags contained in a given irreducible component. This generalizes results by Stroppel–Webster and Fung for type A to all classical types.## References

- Jonathan Brundan and Catharina Stroppel,
*Highest weight categories arising from Khovanov’s diagram algebra I: cellularity*, Mosc. Math. J.**11**(2011), no. 4, 685–722, 821–822 (English, with English and Russian summaries). MR**2918294**, DOI 10.17323/1609-4514-2011-11-4-685-722 - Jonathan Brundan and Catharina Stroppel,
*Highest weight categories arising from Khovanov’s diagram algebra III: category $\scr O$*, Represent. Theory**15**(2011), 170–243. MR**2781018**, DOI 10.1090/S1088-4165-2011-00389-7 - Jonathan Brundan and Catharina Stroppel,
*Gradings on walled Brauer algebras and Khovanov’s arc algebra*, Adv. Math.**231**(2012), no. 2, 709–773. MR**2955190**, DOI 10.1016/j.aim.2012.05.016 - Jonathan Brundan and Catharina Stroppel,
*Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup*, J. Eur. Math. Soc. (JEMS)**14**(2012), no. 2, 373–419. MR**2881300**, DOI 10.4171/JEMS/306 - Yanfeng Chen and Mikhail Khovanov,
*An invariant of tangle cobordisms via subquotients of arc rings*, Fund. Math.**225**(2014), no. 1, 23–44. MR**3205563**, DOI 10.4064/fm225-1-2 - Michael Ehrig and Catharina Stroppel,
*2-row Springer fibres and Khovanov diagram algebras for type D*, Canad. J. Math.**68**(2016), no. 6, 1285–1333. MR**3563723**, DOI 10.4153/CJM-2015-051-4 - Michael Ehrig and Catharina Stroppel,
*Diagrammatic description for the categories of perverse sheaves on isotropic Grassmannians*, Selecta Math. (N.S.)**22**(2016), no. 3, 1455–1536. MR**3518556**, DOI 10.1007/s00029-015-0215-9 - Michael Ehrig and Catharina Stroppel,
*Koszul gradings on Brauer algebras*, Int. Math. Res. Not.**2016**(2016), no. 13, 3970–4011. - Michael Ehrig and Catharina Stroppel,
*On the category of finite-dimensional representations of $\mathrm {OSp}(r\vert 2n)$: part I*, Representation Theory - Current Trends and Perspectives, EMS Series of Congress Reports, European Mathematical Society (EMS), 2016. - Lucas Fresse and Anna Melnikov,
*On the singularity of the irreducible components of a Springer fiber in $\mathfrak {sl}_n$*, Selecta Math. (N.S.)**16**(2010), no. 3, 393–418. MR**2734337**, DOI 10.1007/s00029-010-0025-z - Francis Y. C. Fung,
*On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory*, Adv. Math.**178**(2003), no. 2, 244–276. MR**1994220**, DOI 10.1016/S0001-8708(02)00072-5 - Murray Gerstenhaber,
*Dominance over the classical groups*, Ann. of Math. (2)**74**(1961), 532–569. MR**136683**, DOI 10.2307/1970297 - M. S. Im, C. Lai, and A. Wilbert,
*Irreducible components of two-row Springer fibers and Nakajima quiver varieties*, Unpublished manuscript, arXiv:1910.07411, 2019. - Mikhail Khovanov,
*A functor-valued invariant of tangles*, Algebr. Geom. Topol.**2**(2002), 665–741. MR**1928174**, DOI 10.2140/agt.2002.2.665 - Mikhail Khovanov,
*Crossingless matchings and the cohomology of $(n,n)$ Springer varieties*, Commun. Contemp. Math.**6**(2004), no. 4, 561–577. MR**2078414**, DOI 10.1142/S0219199704001471 - Yiqiang Li,
*Quiver varieties and symmetric pairs*, Represent. Theory**23**(2019), 1–56. MR**3900699**, DOI 10.1090/ert/522 - Tobias Lejczyk and Catharina Stroppel,
*A graphical description of $(D_n,A_{n-1})$ Kazhdan-Lusztig polynomials*, Glasg. Math. J.**55**(2013), no. 2, 313–340. MR**3040865**, DOI 10.1017/S0017089512000547 - Gisa Schäfer,
*A graphical calculus for 2-block Spaltenstein varieties*, Glasg. Math. J.**54**(2012), no. 2, 449–477. MR**2911381**, DOI 10.1017/S0017089512000110 - N. Spaltenstein,
*The fixed point set of a unipotent transformation on the flag manifold*, Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math.**38**(1976), no. 5, 452–456. MR**0485901**, DOI 10.1016/S1385-7258(76)80008-X - Nicolas Spaltenstein,
*Classes unipotentes et sous-groupes de Borel*, Lecture Notes in Mathematics, vol. 946, Springer-Verlag, Berlin-New York, 1982 (French). MR**672610**, DOI 10.1007/BFb0096302 - T. A. Springer,
*Trigonometric sums, Green functions of finite groups and representations of Weyl groups*, Invent. Math.**36**(1976), 173–207. MR**442103**, DOI 10.1007/BF01390009 - T. A. Springer,
*A construction of representations of Weyl groups*, Invent. Math.**44**(1978), no. 3, 279–293. MR**491988**, DOI 10.1007/BF01403165 - Catharina Stroppel and Ben Webster,
*2-block Springer fibers: convolution algebras and coherent sheaves*, Comment. Math. Helv.**87**(2012), no. 2, 477–520. MR**2914857**, DOI 10.4171/CMH/261 - Catharina Stroppel and Arik Wilbert,
*Two-block Springer fibers of types C and D: a diagrammatic approach to Springer theory*, Math. Z.**292**(2019), no. 3-4, 1387–1430. MR**3980297**, DOI 10.1007/s00209-018-2161-7 - J. A. Vargas,
*Fixed points under the action of unipotent elements of $\textrm {SL}_{n}$ in the flag variety*, Bol. Soc. Mat. Mexicana (2)**24**(1979), no. 1, 1–14. MR**579665** - M. van Leeuwen,
*A Robinson-Schensted algorithm in the geometry of flags for classical groups*, PhD thesis, Rijksuniversiteit Utrecht, 1989. - John Williamson,
*The Conjunctive Equivalence of Pencils of Hermitian and Anti-Hermitian Matrices*, Amer. J. Math.**59**(1937), no. 2, 399–413. MR**1507253**, DOI 10.2307/2371425 - Arik Wilbert,
*Topology of two-row Springer fibers for the even orthogonal and symplectic group*, Trans. Amer. Math. Soc.**370**(2018), no. 4, 2707–2737. MR**3748583**, DOI 10.1090/tran/7194

## Additional Information

**Mee Seong Im**- Affiliation: Department of Mathematics, United States Naval Academy, Annapolis, Maryland 21402
- MR Author ID: 873932
- ORCID: 0000-0003-1587-9145
- Email: meeseongim@gmail.com
**Chun-Ju Lai**- Affiliation: Institute of Mathematics, Academia Sinica, Taipei 10617, Taiwan
- MR Author ID: 771041
- ORCID: 0000-0001-8433-0653
- Email: cjlai@gate.sinica.edu.tw
**Arik Wilbert**- Affiliation: Department of Mathematics and Statistics, University of South Alabama, Mobile, Alabama 36688
- MR Author ID: 1250830
- ORCID: 0000-0003-3738-1428
- Email: wilbert@southalabama.edu
- Received by editor(s): January 3, 2021
- Received by editor(s) in revised form: October 10, 2021
- Published electronically: March 17, 2022
- Additional Notes: The second author was partially supported by the MoST grant 109-2115-M-001-011-MY3, 2020–2023.
- Communicated by: Jerzy Weyman
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**150**(2022), 2415-2432 - MSC (2020): Primary 17B08; Secondary 14M15
- DOI: https://doi.org/10.1090/proc/15965
- MathSciNet review: 4399259