On Grauert’s examples of complete Kähler metrics
HTML articles powered by AMS MathViewer
- by Sahil Gehlawat and Kaushal Verma
- Proc. Amer. Math. Soc. 150 (2022), 2925-2936
- DOI: https://doi.org/10.1090/proc/15795
- Published electronically: April 14, 2022
- PDF | Request permission
Abstract:
Grauert showed that the existence of a complete Kähler metric does not characterize domains of holomorphy by constructing such metrics on the complements of complex analytic sets in a domain of holomorphy. In this note, we study the holomorphic sectional curvatures of such metrics in two prototype cases namely, $\mathbb {C}^n \setminus \{0\}, n \ge 2$ and $\mathbb {B}^N \setminus A$, $N \ge 2$ and $A \subset \mathbb {B}^N$ is a hyperplane of codimension at least two. This is done by computing the Gaussian curvature of the restriction of these metrics to the leaves of a suitable holomorphic foliation in these two examples. We also examine this metric on the punctured plane $\mathbb {C}^{\ast }$ and show that it behaves very differently in this case.References
- Andrew Balas, On the holomorphic sectional curvature of complete domains in $\textbf {C}^n$ that are not Stein, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 59–63. MR 1128535, DOI 10.1090/pspum/052.2/1128535
- C. Camacho, A. Lins Neto, and P. Sad, Minimal sets of foliations on complex projective spaces, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 187–203 (1989). MR 1001454, DOI 10.1007/BF02698548
- Alberto Candel, Uniformization of surface laminations, Ann. Sci. École Norm. Sup. (4) 26 (1993), no. 4, 489–516. MR 1235439, DOI 10.24033/asens.1678
- A. Candel and X. Gómez-Mont, Uniformization of the leaves of a rational vector field, Ann. Inst. Fourier (Grenoble) 45 (1995), no. 4, 1123–1133 (English, with English and French summaries). MR 1359843, DOI 10.5802/aif.1488
- Klas Diederich and John Erik Fornæss, Thin complements of complete Kähler domains, Math. Ann. 259 (1982), no. 3, 331–341. MR 661201, DOI 10.1007/BF01456945
- Klas Diederich and John E. Fornæss, On the nature of thin complements of complete Kähler metrics, Math. Ann. 268 (1984), no. 4, 475–495. MR 753409, DOI 10.1007/BF01451854
- A. A. Glutsyuk, Hyperbolicity of the leaves of a generic one-dimensional holomorphic foliation on a nonsingular projective algebraic variety, Tr. Mat. Inst. Steklova 213 (1997), no. Differ. Uravn. s Veshchestv. i Kompleks. Vrem., 90–111 (Russian); English transl., Proc. Steklov Inst. Math. 2(213) (1996), 83–103. MR 1632233
- Hans Grauert, Charakterisierung der Holomorphiegebiete durch die vollständige Kählersche Metrik, Math. Ann. 131 (1956), 38–75 (German). MR 77651, DOI 10.1007/BF01354665
- Marek Jarnicki and Peter Pflug, First steps in several complex variables: Reinhardt domains, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. MR 2396710, DOI 10.4171/049
- A. Lins Neto and J. C. Canille Martins, Hermitian metrics inducing the Poincaré metric, in the leaves of a singular holomorphic foliation by curves, Trans. Amer. Math. Soc. 356 (2004), no. 7, 2963–2988. MR 2052604, DOI 10.1090/S0002-9947-04-03434-8
- A. Lins Neto, Uniformization and the Poincaré metric on the leaves of a foliation by curves, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), no. 3, 351–366. MR 1817093, DOI 10.1007/BF01241634
- Takeo Ohsawa, Analyticity of complements of complete Kähler domains, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), no. 10, 484–487. MR 605768
- A. A. Shcherbakov, Metrics and smooth uniformisation of leaves of holomorphic foliations, Mosc. Math. J. 11 (2011), no. 1, 157–178, 183 (English, with English and Russian summaries). MR 2808217, DOI 10.17323/1609-4514-2011-11-1-157-178
- Bernard Shiffman, Extension of holomorphic maps into hermitian manifolds, Math. Ann. 194 (1971), 249–258. MR 291507, DOI 10.1007/BF01350128
- Marc Troyanov, The Schwarz lemma for nonpositively curved Riemannian surfaces, Manuscripta Math. 72 (1991), no. 3, 251–256. MR 1118545, DOI 10.1007/BF02568278
- Alberto Verjovsky, A uniformization theorem for holomorphic foliations, The Lefschetz centennial conference, Part III (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1987, pp. 233–253. MR 893869
- H. Wu, A remark on holomorphic sectional curvature, Indiana Univ. Math. J. 22 (1972/73), 1103–1108. MR 315642, DOI 10.1512/iumj.1973.22.22092
Bibliographic Information
- Sahil Gehlawat
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India
- ORCID: 0000-0002-7321-7820
- Email: sahilg@iisc.ac.in
- Kaushal Verma
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India
- MR Author ID: 650937
- Email: kverma@iisc.ac.in
- Received by editor(s): August 6, 2020
- Received by editor(s) in revised form: July 22, 2021
- Published electronically: April 14, 2022
- Additional Notes: The first author was supported by the CSIR SPM Ph.D. fellowship.
- Communicated by: Harold P. Boas
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 2925-2936
- MSC (2020): Primary 32Q05, 32Q10; Secondary 32Q02
- DOI: https://doi.org/10.1090/proc/15795
- MathSciNet review: 4428878