Elliptic equations in divergence form with drifts in $L^2$
HTML articles powered by AMS MathViewer
- by Hyunwoo Kwon
- Proc. Amer. Math. Soc. 150 (2022), 3415-3429
- DOI: https://doi.org/10.1090/proc/15828
- Published electronically: April 29, 2022
- PDF | Request permission
Abstract:
We consider the Dirichlet problem for second-order linear elliptic equations in divergence form \begin{equation*} -div(A\nabla u)+\mathbf {b} \cdot \nabla u+\lambda u=f+div\mathbf {F}\quad \text {in } \Omega \quad \text {and}\quad u=0\quad \text {on } \partial \Omega , \end{equation*} in bounded Lipschitz domain $\Omega$ in $\mathbb {R}^2$, where $A:\mathbb {R}^2\rightarrow \mathbb {R}^{2^2}$, $\mathbf {b} : \Omega \rightarrow \mathbb {R}^2$, and $\lambda \geq 0$ are given. If $2<p<\infty$ and $A$ has a small mean oscillation in small balls, $\Omega$ has small Lipschitz constant, and $divA,\,\mathbf {b} \in L^{2}(\Omega ;\mathbb {R}^2)$, then we prove existence and uniqueness of weak solutions in $W^{1,p}_0(\Omega )$ of the problem. Similar result also holds for the dual problem.References
- A. D. Aleksandrov, Uniqueness conditions and bounds for the solution of the Dirichlet problem, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astronom. 18 (1963), no. 3, 5–29 (Russian, with English summary). MR 0164135
- P. Auscher and M. Qafsaoui, Observations on $W^{1,p}$ estimates for divergence elliptic equations with VMO coefficients, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 5 (2002), no. 2, 487–509 (English, with English and Italian summaries). MR 1911202
- Haim Brezis, Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, New York, 2011. MR 2759829, DOI 10.1007/978-0-387-70914-7
- Sun-Sig Byun, Elliptic equations with BMO coefficients in Lipschitz domains, Trans. Amer. Math. Soc. 357 (2005), no. 3, 1025–1046. MR 2110431, DOI 10.1090/S0002-9947-04-03624-4
- Daniel Daners, Domain perturbation for linear and semi-linear boundary value problems, Handbook of differential equations: stationary partial differential equations. Vol. VI, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 1–81. MR 2569323, DOI 10.1016/S1874-5733(08)80018-6
- G. Di Fazio, $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients, Boll. Un. Mat. Ital. A (7) 10 (1996), no. 2, 409–420 (English, with Italian summary). MR 1405255
- Hongjie Dong, Recent progress in the $L_p$ theory for elliptic and parabolic equations with discontinuous coefficients, Anal. Theory Appl. 36 (2020), no. 2, 161–199. MR 4156495, DOI 10.4208/ata.oa-0021
- Hongjie Dong and Doyoon Kim, Elliptic equations in divergence form with partially BMO coefficients, Arch. Ration. Mech. Anal. 196 (2010), no. 1, 25–70. MR 2601069, DOI 10.1007/s00205-009-0228-7
- Hongjie Dong and Doyoon Kim, Higher order elliptic and parabolic systems with variably partially BMO coefficients in regular and irregular domains, J. Funct. Anal. 261 (2011), no. 11, 3279–3327. MR 2835999, DOI 10.1016/j.jfa.2011.08.001
- Hongjie Dong and Doyoon Kim, On the $L_p$-solvability of higher order parabolic and elliptic systems with BMO coefficients, Arch. Ration. Mech. Anal. 199 (2011), no. 3, 889–941. MR 2771670, DOI 10.1007/s00205-010-0345-3
- Jérôme Droniou, Non-coercive linear elliptic problems, Potential Anal. 17 (2002), no. 2, 181–203. MR 1908676, DOI 10.1023/A:1015709329011
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015. MR 3409135, DOI 10.1201/b18333
- N. Filonov, On the regularity of solutions to the equation $-\Delta u+b\cdot \nabla u=0$, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 410 (2013), no. Kraevye Zadachi Matematicheskoĭ Fiziki i Smezhnye Voprosy Teorii Funktsiĭ. 43, 168–186, 189 (English, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 195 (2013), no. 1, 98–108. MR 3048265, DOI 10.1007/s10958-013-1566-4
- Nikolay Filonov and Timofey Shilkin, On some properties of weak solutions to elliptic equations with divergence-free drifts, Mathematical analysis in fluid mechanics—selected recent results, Contemp. Math., vol. 710, Amer. Math. Soc., [Providence], RI, [2018] ©2018, pp. 105–120. MR 3818670, DOI 10.1090/conm/710/14366
- Claus Gerhardt, Stationary solutions to the Navier-Stokes equations in dimension four, Math. Z. 165 (1979), no. 2, 193–197. MR 520820, DOI 10.1007/BF01182469
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Byungsoo Kang and Hyunseok Kim, $W^{1,p}$-estimates for elliptic equations with lower order terms, Commun. Pure Appl. Anal. 16 (2017), no. 3, 799–821. MR 3623550, DOI 10.3934/cpaa.2017038
- Byungsoo Kang and Hyunseok Kim, On $L^p$-resolvent estimates for second-order elliptic equations in divergence form, Potential Anal. 50 (2019), no. 1, 107–133. MR 3900848, DOI 10.1007/s11118-017-9675-1
- Hyunseok Kim and Young-Heon Kim, On weak solutions of elliptic equations with singular drifts, SIAM J. Math. Anal. 47 (2015), no. 2, 1271–1290. MR 3328143, DOI 10.1137/14096270X
- H. Kim and H. Kwon, Dirichlet and Neumann problems for elliptic equations with singular drifts on Lipschitz domains, Trans. Amer. Math. Soc., to appear, arXiv:1811.12619, 2021.
- Hyunseok Kim and Tai-Peng Tsai, Existence, uniqueness, and regularity results for elliptic equations with drift terms in critical weak spaces, SIAM J. Math. Anal. 52 (2020), no. 2, 1146–1191. MR 4075335, DOI 10.1137/19M1282969
- N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Comm. Partial Differential Equations 32 (2007), no. 1-3, 453–475. MR 2304157, DOI 10.1080/03605300600781626
- N. V. Krylov, On stochastic equations with drift in $L_d$, Ann. Probab. 49 (2021), no. 5, 2371–2398. MR 4317707, DOI 10.1214/21-aop1510
- N. V. Krylov, Elliptic equations with VMO $a, b\in L_d$, and $c\in L_{d/2}$, Trans. Amer. Math. Soc. 374 (2021), no. 4, 2805–2822. MR 4223034, DOI 10.1090/tran/8282
- Hyunwoo Kwon, Existence and uniqueness of weak solution in $W^{1,2+\varepsilon }$ for elliptic equations with drifts in weak-$L^n$ spaces, J. Math. Anal. Appl. 500 (2021), no. 1, Paper No. 125165, 19. MR 4235253, DOI 10.1016/j.jmaa.2021.125165
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 0244627
- Gioconda Moscariello, Existence and uniqueness for elliptic equations with lower-order terms, Adv. Calc. Var. 4 (2011), no. 4, 421–444. MR 2844512, DOI 10.1515/ACV.2011.007
- Guido Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc. 1, 189–258 (French). MR 192177, DOI 10.5802/aif.204
- Neil S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 265–308. MR 369884
Bibliographic Information
- Hyunwoo Kwon
- Affiliation: Department of Mathematics, Republic of Korea Air Force Academy, Postbox 335-2, 635, Danjae-ro Sangdang-gu, Cheongju-si 28187, Chungcheongbuk-do, Republic of Korea
- MR Author ID: 1430021
- ORCID: 0000-0002-7199-3631
- Email: willkwon@sogang.ac.kr; and willkwon@afa.ac.kr
- Received by editor(s): April 6, 2021
- Received by editor(s) in revised form: August 19, 2021, August 31, 2021, and September 2, 2021
- Published electronically: April 29, 2022
- Communicated by: Ariel Barton
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 3415-3429
- MSC (2020): Primary 35J15, 35J25
- DOI: https://doi.org/10.1090/proc/15828
- MathSciNet review: 4439464