Dixmier traces, Cesàro means and logarithms
HTML articles powered by AMS MathViewer
- by Jingbo Xia
- Proc. Amer. Math. Soc. 150 (2022), 3477-3485
- DOI: https://doi.org/10.1090/proc/15901
- Published electronically: March 24, 2022
- PDF | Request permission
Abstract:
This paper addresses a subtle issue arising from the measurability of operators with respect to the Dixmier trace.References
- A. Connes, The action functional in noncommutative geometry, Comm. Math. Phys. 117 (1988), 673-683.
- A. Connes, Noncommutative Geometry, Academic Press, San Diego, 1994.
- J. Dixmier, Existence de traces non normales, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A1107-A1108.
- M. Engliš, K. Guo, and G. Zhang, Toeplitz and Hankel operators and Dixmier traces on the unit ball of ${\mathbf {C}}^n$, Proc. Amer. Math. Soc. 137 (2009), 3669-3678.
- M. Engliš and R. Rochberg, The Dixmier trace of Hankel operators on the Bergman space, J. Funct. Anal. 257 (2009), 1445-1479.
- M. Engliš and G. Zhang, Hankel operators and the Dixmier trace on the Hardy space, J. Lond. Math. Soc. (2) 94 (2016), 337-356.
- M. Goffeng and A. Usachev, Estimating Dixmier traces of Hankel operators in Lorentz ideals, J. Funct. Anal. 279 (2020), no. 7, 108688.
- I. Gohberg and M. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, vol. 18, American Mathematical Society, Providence, 1969.
- L. Jiang, Y. Wang, and J. Xia, Toeplitz operators associated with measures and the Dixmier trace on the Hardy space, Complex Anal. Oper. Theory 14 (2020), no. 2, Paper no. 30.
- L. Steven, F. Sukochev, and D. Zanin, Singular traces: theory and applications, De Gruyter Studies in Mathematics, vol. 46, De Gruyter, Berlin, 2013.
- H. Upmeier and K. Wang, Dixmier trace for Toeplitz operators on symmetric domains, J. Funct. Anal. 271 (2016), 532-565.
Bibliographic Information
- Jingbo Xia
- Affiliation: Department of Mathematics, State University of New York at Buffalo, Buffalo, New York 14260
- MR Author ID: 215486
- Email: jxia@@acsu.buffalo.edu
- Received by editor(s): March 25, 2021
- Received by editor(s) in revised form: November 6, 2021
- Published electronically: March 24, 2022
- Communicated by: Adrian Ioana
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 3477-3485
- MSC (2020): Primary 47B10, 58B34
- DOI: https://doi.org/10.1090/proc/15901
- MathSciNet review: 4439469