On a variant of the Beckmann–Black problem
HTML articles powered by AMS MathViewer
- by François Legrand
- Proc. Amer. Math. Soc. 150 (2022), 3267-3281
- DOI: https://doi.org/10.1090/proc/15909
- Published electronically: May 13, 2022
- PDF | Request permission
Abstract:
Given a field $k$ and a finite group $G$, the Beckmann–Black problem asks whether every Galois field extension $F/k$ with group $G$ is the specialization at some $t_0 \in k$ of some Galois field extension $E/k(T)$ with group $G$ and $E \cap \overline {k} = k$. We show that the answer is positive for arbitrary $k$ and $G$, if one waives the requirement that $E/k(T)$ is normal. In fact, our result holds if $\operatorname {Gal}(F/k)$ is any given subgroup $H$ of $G$ and, in the special case $H=G$, we provide a similar conclusion even if $F/k$ is not normal. We next derive that, given a division ring $H$ and an automorphism $\sigma$ of $H$ of finite order, all finite groups occur as automorphism groups over the skew field of fractions $H(T, \sigma )$ of the twisted polynomial ring $H[T, \sigma ]$.References
- Gil Alon, François Legrand, and Elad Paran, Galois groups over rational function fields over skew fields, C. R. Math. Acad. Sci. Paris 358 (2020), no. 7, 785–790 (English, with English and French summaries). MR 4174811, DOI 10.5802/crmath.20
- Angelot Behajaina, Bruno Deschamps, and François Legrand, Problèmes de plongement finis sur les corps non commutatifs (French), Israel J. Math. (2020), To appear, arXiv:2008.08333v2.
- Sybilla Beckmann, Is every extension of $\textbf {Q}$ the specialization of a branched covering?, J. Algebra 164 (1994), no. 2, 430–451. MR 1271246, DOI 10.1006/jabr.1994.1068
- Angelot Behajaina, Théorie inverse de Galois sur les corps des fractions rationnelles tordus, J. Pure Appl. Algebra 225 (2021), no. 4, Paper No. 106549, 10 (French, with English and French summaries). MR 4148351, DOI 10.1016/j.jpaa.2020.106549
- Elena V. Black, Arithmetic lifting of dihedral extensions, J. Algebra 203 (1998), no. 1, 12–29. MR 1620697, DOI 10.1006/jabr.1998.7466
- Elena V. Black, Deformations of dihedral $2$-group extensions of fields, Trans. Amer. Math. Soc. 351 (1999), no. 8, 3229–3241. MR 1467461, DOI 10.1090/S0002-9947-99-02135-2
- Lior Bary-Soroker and Arno Fehm, Open problems in the theory of ample fields, Geometric and differential Galois theories, Sémin. Congr., vol. 27, Soc. Math. France, Paris, 2013, pp. 1–11 (English, with English and French summaries). MR 3203546
- P. M. Cohn, Skew fields, Encyclopedia of Mathematics and its Applications, vol. 57, Cambridge University Press, Cambridge, 1995. Theory of general division rings. MR 1349108, DOI 10.1017/CBO9781139087193
- Jean-Louis Colliot-Thélène, Rational connectedness and Galois covers of the projective line, Ann. of Math. (2) 151 (2000), no. 1, 359–373. MR 1745009, DOI 10.2307/121121
- Pierre Dèbes, Galois covers with prescribed fibers: the Beckmann-Black problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), no. 2, 273–286. MR 1736229
- Pierre Dèbes, Arithmétique des revêtements de la droite, Lecture Notes, 2009, Available at https://math.univ-lille1.fr/~pde/rev_www.pdf.
- Bruno Deschamps, Des extensions plus petites que leurs groupes de Galois, Comm. Algebra 46 (2018), no. 10, 4555–4560 (French, with English and French summaries). MR 3847133, DOI 10.1080/00927872.2018.1448844
- Bruno Deschamps, La méthode Behajaina appliquée aux corps de fractions tordus par une dérivation, Res. Number Theory 7 (2021), no. 2, Paper No. 39, 11 (French, with English and French summaries). MR 4265036, DOI 10.1007/s40993-021-00263-z
- Bruno Deschamps and François Legrand, Le Problème Inverse de Galois sur les corps des fractions tordus à indéterminée centrale, J. Pure Appl. Algebra 224 (2020), no. 5, 106240, 13 (French, with English and French summaries). MR 4046240, DOI 10.1016/j.jpaa.2019.106240
- Bruno Deschamps and François Legrand, À propos d’une version faible du problème inverse de Galois, Acta Arith. 197 (2021), no. 1, 55–76 (French). MR 4185915, DOI 10.4064/aa190726-18-5
- Michael D. Fried and Moshe Jarden, Field arithmetic, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 11, Springer-Verlag, Berlin, 2008. Revised by Jarden. MR 2445111
- Ervin Fried and János Kollár, Automorphism groups of algebraic number fields, Math. Z. 163 (1978), no. 2, 121–123. MR 512465, DOI 10.1007/BF01214058
- Arno Fehm and François Legrand, A note on finite embedding problems with nilpotent kernel, J. Théor. Nombres Bordeaux (2020), To appear, arXiv:2011.07536v3.
- Arno Fehm, François Legrand, and Elad Paran, Embedding problems for automorphism groups of field extensions, Bull. Lond. Math. Soc. 51 (2019), no. 4, 732–744. MR 3990388, DOI 10.1112/blms.12270
- M. Fried, A note on automorphism groups of algebraic number fields, Proc. Amer. Math. Soc. 80 (1980), no. 3, 386–388. MR 580989, DOI 10.1090/S0002-9939-1980-0580989-8
- R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Math. 6 (1939), 239–250 (German). MR 1557026
- Wulf-Dieter Geyer, Jede endliche Gruppe ist Automorphismengruppe einer endlichen Erweiterung $K|\textbf {Q}$, Arch. Math. (Basel) 41 (1983), no. 2, 139–142 (German). MR 719416, DOI 10.1007/BF01196869
- Leon Greenberg, Maximal groups and signatures, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N.J., 1974, pp. 207–226. MR 0379835
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, 2nd ed., London Mathematical Society Student Texts, vol. 61, Cambridge University Press, Cambridge, 2004. MR 2080008, DOI 10.1017/CBO9780511841699
- Dan Haran and Moshe Jarden, Regular split embedding problems over function fields of one variable over ample fields, J. Algebra 208 (1998), no. 1, 147–164. MR 1643991, DOI 10.1006/jabr.1998.7454
- Nathan Jacobson, Structure of rings, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR 0222106
- Moshe Jarden, Intersections of local algebraic extensions of a Hilbertian field, Generators and relations in groups and geometries (Lucca, 1990) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 333, Kluwer Acad. Publ., Dordrecht, 1991, pp. 343–405. MR 1206921, DOI 10.1007/978-94-011-3382-1_{1}3
- Moshe Jarden, Algebraic patching, Springer Monographs in Mathematics, Springer, Heidelberg, 2011. MR 2768285, DOI 10.1007/978-3-642-15128-6
- Jürgen Klüners and Gunter Malle, A database for field extensions of the rationals, LMS J. Comput. Math. 4 (2001), 182–196. MR 1901356, DOI 10.1112/S1461157000000851
- Jochen Koenigsmann, The regular inverse Galois problem over non-large fields, J. Eur. Math. Soc. (JEMS) 6 (2004), no. 4, 425–434. MR 2094398, DOI 10.4171/JEMS/15
- François Legrand, On finite embedding problems with abelian kernels, Manuscript, 2020, Available at https://sites.google.com/site/francoislegrandfr/recherche.
- François Legrand and Elad Paran, Automorphism groups over Hilbertian fields, J. Algebra 503 (2018), 1–7. MR 3779985, DOI 10.1016/j.jalgebra.2017.12.041
- Laurent Moret-Bailly, Construction de revêtements de courbes pointées, J. Algebra 240 (2001), no. 2, 505–534 (French, with English and French summaries). MR 1841345, DOI 10.1006/jabr.2001.8743
- Jean-François Mestre, Extensions régulières de $\textbf {Q}(T)$ de groupe de Galois $\~A_n$, J. Algebra 131 (1990), no. 2, 483–495 (French). MR 1058560, DOI 10.1016/0021-8693(90)90189-U
- Gunter Malle and B. Heinrich Matzat, Inverse Galois theory, Springer Monographs in Mathematics, Springer, Berlin, 2018. Second edition [ MR1711577]. MR 3822366, DOI 10.1007/978-3-662-55420-3
- Manohar Madan and Michael Rosen, The automorphism group of a function field, Proc. Amer. Math. Soc. 115 (1992), no. 4, 923–929. MR 1088443, DOI 10.1090/S0002-9939-1992-1088443-2
- Daniel J. Madden and Robert C. Valentini, The group of automorphisms of algebraic function fields, J. Reine Angew. Math. 343 (1983), 162–168. MR 705883, DOI 10.1515/crll.1983.343.162
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026, DOI 10.1007/978-3-540-37889-1
- Oystein Ore, Theory of non-commutative polynomials, Ann. of Math. (2) 34 (1933), no. 3, 480–508. MR 1503119, DOI 10.2307/1968173
- Florian Pop, Embedding problems over large fields, Ann. of Math. (2) 144 (1996), no. 1, 1–34. MR 1405941, DOI 10.2307/2118581
- Florian Pop, Little survey on large fields—old & new, Valuation theory in interaction, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2014, pp. 432–463. MR 3329044
- Henning Stichtenoth, Zur Realisierbarkeit endlicher Gruppen als Automorphismengruppen algebraischer Funktionenkörper, Math. Z. 187 (1984), no. 2, 221–225 (German). MR 753434, DOI 10.1007/BF01161706
- Toyofumi Takahashi, On automorphism groups of global fields, Sūgaku 32 (1980), no. 2, 159–160 (Japanese). MR 614568
- David Zywina, The inverse Galois problem for $\textrm {PSL}_2(\Bbb {F}_p)$, Duke Math. J. 164 (2015), no. 12, 2253–2292. MR 3397386, DOI 10.1215/00127094-3129271
Bibliographic Information
- François Legrand
- Affiliation: Normandie Univ., UNICAEN, CNRS, Laboratoire de Mathématiques Nicolas Oresme, 14000 Caen, France
- Email: francois.legrand@unicaen.fr
- Received by editor(s): April 23, 2021
- Received by editor(s) in revised form: September 16, 2021, and November 12, 2021
- Published electronically: May 13, 2022
- Additional Notes: Part of the present work fit into Project TIGANOCO, which was funded by the European Union within the framework of the Operational Programme ERDF/ESF 2014-2020.
- Communicated by: Rachel Pries
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 3267-3281
- MSC (2020): Primary 12F12; Secondary 20B25, 12E15
- DOI: https://doi.org/10.1090/proc/15909
- MathSciNet review: 4439452