Profinite groups with few conjugacy classes of $p$-elements
HTML articles powered by AMS MathViewer
- by John S. Wilson
- Proc. Amer. Math. Soc. 150 (2022), 3297-3305
- DOI: https://doi.org/10.1090/proc/15925
- Published electronically: April 1, 2022
- PDF | Request permission
Abstract:
It is proved that a profinite group $G$ has fewer than $2^{\aleph _0}$ conjugacy classes of $p$-elements for an odd prime $p$ if and only if its $p$-Sylow $p$-subgroups are finite. (Here, by a $p$-element one understands an element that either has $p$-power order or topologically generates a group isomorphic to $\mathbb {Z}_p$.) A weaker result is proved for $p=2$.References
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- G. Frobenius, Über einen Fundamentalsatz der Gruppentheorie, Berliner Sitzungsber. (1903), 987–991.
- Daniel Gorenstein, Finite groups, 2nd ed., Chelsea Publishing Co., New York, 1980. MR 569209
- Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592, DOI 10.1090/surv/040.1
- Wolfgang Herfort, An arithmetic property of profinite groups, Manuscripta Math. 37 (1982), no. 1, 11–17. MR 649560, DOI 10.1007/BF01239941
- Andrei Jaikin-Zapirain and Nikolay Nikolov, An infinite compact Hausdorff group has uncountably many conjugacy classes, Proc. Amer. Math. Soc. 147 (2019), no. 9, 4083–4089. MR 3993799, DOI 10.1090/proc/14507
- Alexander Lubotzky and Avinoam Mann, Powerful $p$-groups. I. Finite groups, J. Algebra 105 (1987), no. 2, 484–505. MR 873681, DOI 10.1016/0021-8693(87)90211-0
- Aner Shalev, On almost fixed point free automorphisms, J. Algebra 157 (1993), no. 1, 271–282. MR 1219668, DOI 10.1006/jabr.1993.1100
- John S. Wilson, On the structure of compact torsion groups, Monatsh. Math. 96 (1983), no. 1, 57–66. MR 721596, DOI 10.1007/BF01298934
- John S. Wilson, Profinite groups, London Mathematical Society Monographs. New Series, vol. 19, The Clarendon Press, Oxford University Press, New York, 1998. MR 1691054
- John S. Wilson, The probability of generating a soluble subgroup of a finite group, J. Lond. Math. Soc. (2) 75 (2007), no. 2, 431–446. MR 2340237, DOI 10.1112/jlms/jdm020
Bibliographic Information
- John S. Wilson
- Affiliation: Mathematisches Institut, Universität Leipzig, 04109 Leipzig, Germany; and Christ’s College, Cambridge CB2 3BU, United Kingdom
- Email: wilson@math.uni-leipzig.de, jsw13@cam.ac.uk
- Received by editor(s): September 12, 2021
- Received by editor(s) in revised form: November 15, 2021
- Published electronically: April 1, 2022
- Communicated by: Martin Liebeck
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 3297-3305
- MSC (2020): Primary 20E18, 20E45, 22C05
- DOI: https://doi.org/10.1090/proc/15925
- MathSciNet review: 4439454