The Gelfand problem on annular domains of double revolution with monotonicity
HTML articles powered by AMS MathViewer
- by A. Aghajani, C. Cowan and A. Moameni
- Proc. Amer. Math. Soc. 150 (2022), 3457-3470
- DOI: https://doi.org/10.1090/proc/15990
- Published electronically: May 13, 2022
- PDF | Request permission
Abstract:
We consider the following Gelfand problem \begin{equation*} (P)_\lambda \qquad \left \{\begin {array}{ll} -\Delta u = \lambda a(x) f(u) & \text { in } \Omega , \\ u>0 & \text { in } \Omega , \\ u= 0 & \text { on } \partial \Omega , \end{array}\right . \end{equation*} where $\lambda >0$ is a parameter and $f(u)=e^u$ or $f(u)=(u+1)^p$ where $p>1$ and $a(x)$ is a nonnegative function with certain monotonicity (we allow $a(x)=1$). Here $\Omega$ is an annular domain which is also a double domain of revolution. Our interest will be in the question of the regularity of the extremal solution. We obtain improved compactness because of the annular nature of the domain and we obtain further compactness under some monotonicity assumptions on the domain.References
- A. Aghajani, New a priori estimates for semistable solutions of semilinear elliptic equations, Potential Anal. 44 (2016), no. 4, 729–744. MR 3490547, DOI 10.1007/s11118-015-9528-8
- Herbert Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620–709. MR 415432, DOI 10.1137/1018114
- A. Boscaggin, F. Colasuonno, B. Noris, and Tobias Weth, A supercritical elliptic equation in the annulus, arXiv:2102.07141, 2021.
- Haïm Brezis, Thierry Cazenave, Yvan Martel, and Arthur Ramiandrisoa, Blow up for $u_t-\Delta u=g(u)$ revisited, Adv. Differential Equations 1 (1996), no. 1, 73–90. MR 1357955
- H. Brézis and R. E. L. Turner, On a class of superlinear elliptic problems, Comm. Partial Differential Equations 2 (1977), no. 6, 601–614. MR 509489, DOI 10.1080/03605307708820041
- Haim Brezis and Juan Luis Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 443–469. MR 1605678
- Xavier Cabré, Boundedness of stable solutions to semilinear elliptic equations: a survey, Adv. Nonlinear Stud. 17 (2017), no. 2, 355–368. MR 3641647, DOI 10.1515/ans-2017-0008
- Xavier Cabré, Alessio Figalli, Xavier Ros-Oton, and Joaquim Serra, Stable solutions to semilinear elliptic equations are smooth up to dimension 9, Acta Math. 224 (2020), no. 2, 187–252. MR 4117051, DOI 10.4310/acta.2020.v224.n2.a1
- Xavier Cabré, Regularity of minimizers of semilinear elliptic problems up to dimension 4, Comm. Pure Appl. Math. 63 (2010), no. 10, 1362–1380. MR 2681476, DOI 10.1002/cpa.20327
- Xavier Cabré and Antonio Capella, Regularity of radial minimizers and extremal solutions of semilinear elliptic equations, J. Funct. Anal. 238 (2006), no. 2, 709–733. MR 2253739, DOI 10.1016/j.jfa.2005.12.018
- Xavier Cabré, Antonio Capella, and Manel Sanchón, Regularity of radial minimizers of reaction equations involving the $p$-Laplacian, Calc. Var. Partial Differential Equations 34 (2009), no. 4, 475–494. MR 2476421, DOI 10.1007/s00526-008-0192-3
- Xavier Cabré and Xavier Ros-Oton, Regularity of stable solutions up to dimension 7 in domains of double revolution, Comm. Partial Differential Equations 38 (2013), no. 1, 135–154. MR 3005549, DOI 10.1080/03605302.2012.697505
- Xavier Cabré and Manel Sanchón, Geometric-type Sobolev inequalities and applications to the regularity of minimizers, J. Funct. Anal. 264 (2013), no. 1, 303–325. MR 2995709, DOI 10.1016/j.jfa.2012.10.012
- Xavier Cabré, Manel Sanchón, and Joel Spruck, A priori estimates for semistable solutions of semilinear elliptic equations, Discrete Contin. Dyn. Syst. 36 (2016), no. 2, 601–609. MR 3392893, DOI 10.3934/dcds.2016.36.601
- Luis A. Caffarelli, Basilis Gidas, and Joel Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), no. 3, 271–297. MR 982351, DOI 10.1002/cpa.3160420304
- Craig Cowan and Abbas Moameni, A new variational principle, convexity, and supercritical Neumann problems, Trans. Amer. Math. Soc. 371 (2019), no. 9, 5993–6023. MR 3937316, DOI 10.1090/tran/7250
- Craig Cowan, Abbas Moameni, and Leila Salimi, Existence of solutions to supercritical Neumann problems via a new variational principle, Electron. J. Differential Equations (2017), Paper No. 213, 19. MR 3711166
- C. Cowan and A. Moameni, Supercritical elliptic problems on nonradial domains via a nonsmooth variational approach, Preprint, arXiv:2104.11286, 2021.
- Michael G. Crandall and Paul H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58 (1975), no. 3, 207–218. MR 382848, DOI 10.1007/BF00280741
- J. Dávila and L. Dupaigne, Perturbing singular solutions of the Gelfand problem, Commun. Contemp. Math. 9 (2007), no. 5, 639–680. MR 2361735, DOI 10.1142/S0219199707002575
- Louis Dupaigne, Stable solutions of elliptic partial differential equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 143, Chapman & Hall/CRC, Boca Raton, FL, 2011. MR 2779463, DOI 10.1201/b10802
- L. Dupaigne, B. Sirakov, and P. Souplet, A Liouville-type theorem for the Lane-Emden equation in a half-space, Int. Math. Res. Not. IMRN (2021), rnaa392, DOI 10.1093/imrn/rnaa392.
- Pierpaolo Esposito, Nassif Ghoussoub, and Yujin Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math. 60 (2007), no. 12, 1731–1768. MR 2358647, DOI 10.1002/cpa.20189
- Alberto Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\Bbb R^N$, J. Math. Pures Appl. (9) 87 (2007), no. 5, 537–561 (English, with English and French summaries). MR 2322150, DOI 10.1016/j.matpur.2007.03.001
- Nassif Ghoussoub and Yujin Guo, On the partial differential equations of electrostatic MEMS devices: stationary case, SIAM J. Math. Anal. 38 (2006/07), no. 5, 1423–1449. MR 2286013, DOI 10.1137/050647803
- B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883–901. MR 619749, DOI 10.1080/03605308108820196
- B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598. MR 615628, DOI 10.1002/cpa.3160340406
- D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241–269. MR 340701, DOI 10.1007/BF00250508
- Yvan Martel, Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math. 23 (1997), no. 1, 161–168. MR 1688823
- Fulbert Mignot and Jean-Pierre Puel, Sur une classe de problèmes non linéaires avec non linéairité positive, croissante, convexe, Comm. Partial Differential Equations 5 (1980), no. 8, 791–836 (French). MR 583604, DOI 10.1080/03605308008820155
- Petru Mironescu and Vicenţiu D. Rădulescu, The study of a bifurcation problem associated to an asymptotically linear function, Nonlinear Anal. 26 (1996), no. 4, 857–875. MR 1362758, DOI 10.1016/0362-546X(94)00327-E
- Abbas Moameni, Critical point theory on convex subsets with applications in differential equations and analysis, J. Math. Pures Appl. (9) 141 (2020), 266–315 (English, with English and French summaries). MR 4134457, DOI 10.1016/j.matpur.2020.05.005
- Abbas Moameni, New variational principles of symmetric boundary value problems, J. Convex Anal. 24 (2017), no. 2, 365–381. MR 3639265
- Gueorgui Nedev, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 11, 997–1002 (English, with English and French summaries). MR 1779693, DOI 10.1016/S0764-4442(00)00289-5
- G. Nedev, Extremal solution of semilinear elliptic equations, Unpublished preprint, 2001.
- S. Pohozaev, Eigenfunctions of the equation $\Delta u + \lambda f(u)=0$. Soviet. Math. Dokl. 6 (1965) 1408–1411.
- Manel Sanchón, Boundedness of the extremal solution of some $p$-Laplacian problems, Nonlinear Anal. 67 (2007), no. 1, 281–294. MR 2317200, DOI 10.1016/j.na.2006.05.010
- James Serrin, Local behavior of solutions of quasi-linear equations, Acta Math. 111 (1964), 247–302. MR 170096, DOI 10.1007/BF02391014
- C. A. Stuart, An introduction to bifurcation theory based on differential calculus, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, Mass.-London, 1979, pp. 76–135. MR 584397
- Salvador Villegas, Boundedness of extremal solutions in dimension 4, Adv. Math. 235 (2013), 126–133. MR 3010053, DOI 10.1016/j.aim.2012.11.015
- Dong Ye and Feng Zhou, Boundedness of the extremal solution for semilinear elliptic problems, Commun. Contemp. Math. 4 (2002), no. 3, 547–558. MR 1918759, DOI 10.1142/S0219199702000701
Bibliographic Information
- A. Aghajani
- Affiliation: School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran
- MR Author ID: 693413
- Email: aghajani@iust.ac.ir
- C. Cowan
- Affiliation: Department of Mathematics, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- MR Author ID: 815665
- Email: craig.cowan@umanitoba.ca
- A. Moameni
- Affiliation: Department of Mathematics & Statistics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Email: momeni@math.carleton.ca
- Received by editor(s): August 26, 2021
- Received by editor(s) in revised form: November 2, 2021
- Published electronically: May 13, 2022
- Communicated by: Catherine Sulem
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 3457-3470
- MSC (2020): Primary 35J15, 35J61
- DOI: https://doi.org/10.1090/proc/15990
- MathSciNet review: 4439467