Counting basis extensions in a lattice
HTML articles powered by AMS MathViewer
- by Maxwell Forst and Lenny Fukshansky
- Proc. Amer. Math. Soc. 150 (2022), 3199-3213
- DOI: https://doi.org/10.1090/proc/16011
- Published electronically: May 6, 2022
- PDF | Request permission
Abstract:
Given a primitive collection of vectors in the integer lattice, we count the number of ways it can be extended to a basis by vectors with sup-norm bounded by $T$, producing an asymptotic estimate as $T \to \infty$. This problem can be interpreted in terms of unimodular matrices, as well as a representation problem for a class of multilinear forms. In the $2$-dimensional case, this problem is also connected to the distribution of Farey fractions. As an auxiliary lemma we prove a counting estimate for the number of integer lattice points of bounded sup-norm in a hyperplane in $\mathbb R^n$. Our main result on counting basis extensions also generalizes to arbitrary lattices in $\mathbb R^n$. Finally, we establish some basic properties of sparse representations of integers by multilinear forms.References
- Daniel Bertrand, Duality on tori and multiplicative dependence relations, J. Austral. Math. Soc. Ser. A 62 (1997), no. 2, 198–216. MR 1433209, DOI 10.1017/S1446788700000768
- I. Borosh, M. Flahive, D. Rubin, and B. Treybig, A sharp bound for solutions of linear Diophantine equations, Proc. Amer. Math. Soc. 105 (1989), no. 4, 844–846. MR 955458, DOI 10.1090/S0002-9939-1989-0955458-1
- Albrecht Böttcher and Lenny Fukshansky, Representing integers by multilinear polynomials, Res. Number Theory 6 (2020), no. 4, Paper No. 38, 8. MR 4159159, DOI 10.1007/s40993-020-00218-w
- J. W. S. Cassels, An introduction to the geometry of numbers, Classics in Mathematics, Springer-Verlag, Berlin, 1997. Corrected reprint of the 1971 edition. MR 1434478
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- Maozhong Fang, On the completion of a partial integral matrix to a unimodular matrix, Linear Algebra Appl. 422 (2007), no. 1, 291–294. MR 2299013, DOI 10.1016/j.laa.2006.10.012
- Lenny Fukshansky, Integral points of small height outside of a hypersurface, Monatsh. Math. 147 (2006), no. 1, 25–41. MR 2199121, DOI 10.1007/s00605-005-0333-0
- Lenny Fukshansky and Glenn Henshaw, Lattice point counting and height bounds over number fields and quaternion algebras, Online J. Anal. Comb. 8 (2013), 20. MR 3103840
- P. Gordan, Über den größten gemeinsamen Faktor, Math. Ann. 7 (1873), 443–448
- P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, 2nd ed., North-Holland Mathematical Library, vol. 37, North-Holland Publishing Co., Amsterdam, 1987. MR 893813
- Xiangqian Guo, Fengdan Hou, and Xuewen Liu, Natural density of integral matrices that can be extended to invertible integral matrices, Linear Multilinear Algebra 64 (2016), no. 9, 1878–1886. MR 3509507, DOI 10.1080/03081087.2015.1127316
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- D. R. Heath-Brown, Diophantine approximation with square-free numbers, Math. Z. 187 (1984), no. 3, 335–344. MR 757475, DOI 10.1007/BF01161951
- W. V. D. Hodge and D. Pedoe, Methods of Algebraic Geometry. Vol. I, Cambridge, at the University Press; New York, The Macmillan Company, 1947. MR 0028055
- Jacques Martinet, Perfect lattices in Euclidean spaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 327, Springer-Verlag, Berlin, 2003. MR 1957723, DOI 10.1007/978-3-662-05167-2
- Gérard Maze, Joachim Rosenthal, and Urs Wagner, Natural density of rectangular unimodular integer matrices, Linear Algebra Appl. 434 (2011), no. 5, 1319–1324. MR 2763589, DOI 10.1016/j.laa.2010.11.015
- J. E. Nymann, On the probability that $k$ positive integers are relatively prime, J. Number Theory 4 (1972), 469–473. MR 304343, DOI 10.1016/0022-314X(72)90038-8
- Xingzhi Zhan, Completion of a partial integral matrix to a unimodular matrix, Linear Algebra Appl. 414 (2006), no. 1, 373–377. MR 2209252, DOI 10.1016/j.laa.2005.10.013
Bibliographic Information
- Maxwell Forst
- Affiliation: Institute of Mathematical Sciences, Claremont Graduate University, Claremont, California 91711
- ORCID: 0000-0002-3323-3041
- Email: maxwell.forst@cgu.edu
- Lenny Fukshansky
- Affiliation: Department of Mathematics, 850 Columbia Avenue, Claremont McKenna College, Claremont, California 91711
- MR Author ID: 740792
- Email: lenny@cmc.edu
- Received by editor(s): February 9, 2021
- Published electronically: May 6, 2022
- Additional Notes: The second author was partially supported by the Simons Foundation grant #519058.
- Communicated by: Matthew A. Papanikolas
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 3199-3213
- MSC (2020): Primary 11H06, 11C08, 11C20, 11D85, 11D45
- DOI: https://doi.org/10.1090/proc/16011
- MathSciNet review: 4439446