An upper bound for the Menchov-Rademacher operator for right triangles
HTML articles powered by AMS MathViewer
- by Armen Vagharshakyan
- Proc. Amer. Math. Soc. 150 (2022), 3959-3971
- DOI: https://doi.org/10.1090/proc/15950
- Published electronically: April 7, 2022
- PDF | Request permission
Abstract:
The Menchov-Rademacher inequality is an inequality in harmonic analysis that bounds the $L_2$ norm of a certain maximal operator. It was first established in order to prove almost everywhere convergence of a one-parameter series of orthogonal functions. When two-parameter series of orthogonal functions is considered, the exact way the series is grouped becomes essential. We will consider grouping of a two-parameter series, generated by a sequence of right triangles with a vertex at the origin, who might be non-equilateral, and prove almost everywhere convergence when the eccentricity of those triangles is bounded. In order to carry out the proof, we will derive an analogue of the Menchov-Rademacher inequality for right triangles.References
- Orthogonal series. Encyclopedia of mathematics. http://encyclopediaofmath.org/index.php?title=Orthogonal_series&oldid=49507
- P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), no. 1, 335–400 (French). MR 1555035, DOI 10.1007/BF02418579
- M. Plancherel, Sur la convergence des séries de fonctions orthogonales, C. R. Acad. Sci. Paris 157 (1913), 539–542.
- Michel Plancherel, Les problèmes de Cantor et de Du Bois-Reymond dans la théorie des séries de polynômes de Legendre, Ann. Sci. École Norm. Sup. (3) 31 (1914), 223–262 (French). MR 1509177, DOI 10.24033/asens.675
- P. Ul’yanov, Development of D.E. Men’shov’s results in the theory of orthogonal series, Russian Math. 47, no. 5 (1992).
- Heinz König, Measure and integration, Springer-Verlag, Berlin, 1997. An advanced course in basic procedures and applications. MR 1633615
- Hans Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87 (1922), no. 1-2, 112–138 (German). MR 1512104, DOI 10.1007/BF01458040
- D. Menchoff, Sur les series de fonctions orthogonales, Fund. Math. 4 (1923), 82–105.
- Witold Bednorz, A note on the Men′shov-Rademacher inequality, Bull. Pol. Acad. Sci. Math. 54 (2006), no. 1, 89–93. MR 2270798, DOI 10.4064/ba54-1-9
- E. G. Kounias, A note on Rademacher’s inequality, Acta Math. Acad. Sci. Hungar. 21 (1970), 447–448. MR 270414, DOI 10.1007/BF01894790
- S. A. Chobanyan, Some remarks on the Men′shov-Rademacher functional, Mat. Zametki 59 (1996), no. 5, 787–790 (Russian); English transl., Math. Notes 59 (1996), no. 5-6, 571–574. MR 1445464, DOI 10.1007/BF02308830
- Adam Paszkiewicz, A complete characterization of coefficients of a.e. convergent orthogonal series and majorizing measures, Invent. Math. 180 (2010), no. 1, 55–110. MR 2593277, DOI 10.1007/s00222-009-0226-2
- Charles Fefferman, On the convergence of multiple Fourier series, Bull. Amer. Math. Soc. 77 (1971), 744–745. MR 435724, DOI 10.1090/S0002-9904-1971-12793-3
- N. R. Tevzadze, The convergence of the double Fourier series at a square summable function, Sakharth. SSR Mecn. Akad. Moambe 58 (1970), 277–279 (Russian, with Georgian and English summaries). MR 0298338
- Per Sjölin, Convergence almost everywhere of certain singular integrals and multiple Fourier series, Ark. Mat. 9 (1971), 65–90. MR 336222, DOI 10.1007/BF02383638
- N. Antonov, “Almost everywhere convergence over cubes of multiple trigonometric Fourier series,” Izv. Math. 68 (2004), 223.
- Mieczysław Mastyło and Luis Rodríguez-Piazza, Convergence almost everywhere of multiple Fourier series over cubes, Trans. Amer. Math. Soc. 370 (2018), no. 3, 1629–1659. MR 3739187, DOI 10.1090/tran/7172
- Charles Fefferman, On the divergence of multiple Fourier series, Bull. Amer. Math. Soc. 77 (1971), 191–195. MR 279529, DOI 10.1090/S0002-9904-1971-12675-7
- J. L. Bentley, D. Haken, and J. B. Saxe, A general method for solving divide-and-conquer recurrences, SIGACT News 12 (1980), no. 3, 36–44.
Bibliographic Information
- Armen Vagharshakyan
- Affiliation: Institute of Mathematics, Armenian National Academy of Sciences, Baghramyan Avenue 24/5, Yerevan 0019, Armenia
- MR Author ID: 776347
- ORCID: 0000-0003-4262-1019
- Email: armensci@yahoo.com
- Received by editor(s): November 11, 2020
- Received by editor(s) in revised form: September 20, 2021, and December 10, 2021
- Published electronically: April 7, 2022
- Additional Notes: Research was supported by the Science Committee of Armenia, grant 18T-1A081
- Communicated by: Dmitriy Bilyk
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 3959-3971
- MSC (2020): Primary 26D15, 42B25
- DOI: https://doi.org/10.1090/proc/15950
- MathSciNet review: 4446244