## Fragmentation norm and relative quasimorphisms

HTML articles powered by AMS MathViewer

- by Michael Brandenbursky and Jarek Kędra PDF
- Proc. Amer. Math. Soc.
**150**(2022), 4519-4531 Request permission

## Abstract:

We prove that manifolds with complicated enough fundamental group admit measure-preserving homeomorphisms which have positive stable fragmentation norm with respect to balls of bounded measure.## References

- Augustin Banyaga,
*The structure of classical diffeomorphism groups*, Mathematics and its Applications, vol. 400, Kluwer Academic Publishers Group, Dordrecht, 1997. MR**1445290**, DOI 10.1007/978-1-4757-6800-8 - Michael Brandenbursky,
*Bi-invariant metrics and quasi-morphisms on groups of Hamiltonian diffeomorphisms of surfaces*, Internat. J. Math.**26**(2015), no. 9, 1550066, 29. MR**3391653**, DOI 10.1142/S0129167X15500664 - Michael Brandenbursky and Michal Marcinkowski,
*Entropy and quasimorphisms*, to appear in Journal of Modern Dynamics. - Michael Brandenbursky and Egor Shelukhin,
*On the $L^p$-geometry of autonomous Hamiltonian diffeomorphisms of surfaces*, Math. Res. Lett.**22**(2015), no. 5, 1275–1294. MR**3488375**, DOI 10.4310/MRL.2015.v22.n5.a1 - Glen E. Bredon,
*Topology and geometry*, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1993. MR**1224675**, DOI 10.1007/978-1-4757-6848-0 - Martin R. Bridson and André Haefliger,
*Metric spaces of non-positive curvature*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR**1744486**, DOI 10.1007/978-3-662-12494-9 - Dmitri Burago, Sergei Ivanov, and Leonid Polterovich,
*Conjugation-invariant norms on groups of geometric origin*, Groups of diffeomorphisms, Adv. Stud. Pure Math., vol. 52, Math. Soc. Japan, Tokyo, 2008, pp. 221–250. MR**2509711**, DOI 10.2969/aspm/05210221 - Danny Calegari,
*scl*, MSJ Memoirs, vol. 20, Mathematical Society of Japan, Tokyo, 2009. MR**2527432**, DOI 10.1142/e018 - Michael Entov and Leonid Polterovich,
*Quasi-states and symplectic intersections*, Comment. Math. Helv.**81**(2006), no. 1, 75–99. MR**2208798**, DOI 10.4171/CMH/43 - David B. A. Epstein and Koji Fujiwara,
*The second bounded cohomology of word-hyperbolic groups*, Topology**36**(1997), no. 6, 1275–1289. MR**1452851**, DOI 10.1016/S0040-9383(96)00046-8 - A. Fathi,
*Structure of the group of homeomorphisms preserving a good measure on a compact manifold*, Ann. Sci. École Norm. Sup. (4)**13**(1980), no. 1, 45–93. MR**584082**, DOI 10.24033/asens.1377 - Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono,
*Technical details on kuranishi structure and virtual fundamental chain*, arXiv:1209.4410 (2012). - D. H. Gottlieb,
*A certain subgroup of the fundamental group*, Amer. J. Math.**87**(1965), 840–856. MR**189027**, DOI 10.2307/2373248 - Tomohiko Ishida,
*Quasi-morphisms on the group of area-preserving diffeomorphisms of the 2-disk via braid groups*, Proc. Amer. Math. Soc. Ser. B**1**(2014), 43–51. MR**3181631**, DOI 10.1090/S2330-1511-2014-00002-X - Morimichi Kawasaki,
*Relative quasimorphisms and stably unbounded norms on the group of symplectomorphisms of the Euclidean spaces*, J. Symplectic Geom.**14**(2016), no. 1, 297–304. MR**3523258**, DOI 10.4310/JSG.2016.v14.n1.a11 - Sergei Lanzat,
*Quasi-morphisms and symplectic quasi-states for convex symplectic manifolds*, Int. Math. Res. Not. IMRN**23**(2013), 5321–5365. MR**3142258**, DOI 10.1093/imrn/rns205 - Dusa McDuff and Dietmar Salamon,
*Introduction to symplectic topology*, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998. MR**1698616** - Alexandra Monzner, Nicolas Vichery, and Frol Zapolsky,
*Partial quasimorphisms and quasistates on cotangent bundles, and symplectic homogenization*, J. Mod. Dyn.**6**(2012), no. 2, 205–249. MR**2968955**, DOI 10.3934/jmd.2012.6.205 - Leonid Polterovich,
*Floer homology, dynamics and groups*, Morse theoretic methods in nonlinear analysis and in symplectic topology, NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer, Dordrecht, 2006, pp. 417–438. MR**2276956**, DOI 10.1007/1-4020-4266-3_{0}9 - Leonid Polterovich and Karl Friedrich Siburg,
*On the asymptotic geometry of area-preserving maps*, Math. Res. Lett.**7**(2000), no. 2-3, 233–243. MR**1764319**, DOI 10.4310/MRL.2000.v7.n2.a8 - Takashi Sakai,
*Riemannian geometry*, Translations of Mathematical Monographs, vol. 149, American Mathematical Society, Providence, RI, 1996. Translated from the 1992 Japanese original by the author. MR**1390760**, DOI 10.1090/mmono/149 - Takashi Tsuboi,
*The Calabi invariant and the Euler class*, Trans. Amer. Math. Soc.**352**(2000), no. 2, 515–524. MR**1487633**, DOI 10.1090/S0002-9947-99-02253-9

## Additional Information

**Michael Brandenbursky**- Affiliation: Ben Gurion University of the Negev, Beer Sheva, 8410501 Israel
- MR Author ID: 957049
- Email: brandens@math.bgu.ac.il
**Jarek Kędra**- Affiliation: Department of Mathematics, University of Aberdeen, Fraser Noble Building, Aberdeen AB24 3UE, Scotland, United Kingdom; and Institute of Mathematics, University of Szczecin, 70-451 Szczecin, Poland
- Email: kedra@abdn.ac.uk
- Received by editor(s): April 30, 2018
- Received by editor(s) in revised form: February 9, 2019, March 18, 2019, March 20, 2019, and April 21, 2019
- Published electronically: June 22, 2022
- Additional Notes: This work was funded by a Leverhulme Trust Research Project Grant RPG-2017-159.
- Communicated by: Ken Bromberg
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**150**(2022), 4519-4531 - MSC (2020): Primary 57S05; Secondary 20F65
- DOI: https://doi.org/10.1090/proc/14683
- MathSciNet review: 4470192