A determination theorem in terms of the metric slope
HTML articles powered by AMS MathViewer
- by Aris Daniilidis and David Salas
- Proc. Amer. Math. Soc. 150 (2022), 4325-4333
- DOI: https://doi.org/10.1090/proc/15958
- Published electronically: May 27, 2022
- PDF | Request permission
Abstract:
We show that in a metric space, any continuous function with compact sublevel sets and finite metric slope is uniquely determined by the slope and its critical values.References
- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. MR 2401600
- Dominique Azé and Jean-Noël Corvellec, Characterizations of error bounds for lower semicontinuous functions on metric spaces, ESAIM Control Optim. Calc. Var. 10 (2004), no. 3, 409–425. MR 2084330, DOI 10.1051/cocv:2004013
- Tahar Z. Boulmezaoud, Philippe Cieutat, and Aris Daniilidis, Gradient flows, second-order gradient systems and convexity, SIAM J. Optim. 28 (2018), no. 3, 2049–2066. MR 3829521, DOI 10.1137/16M1153418
- Ennio De Giorgi, Antonio Marino, and Mario Tosques, Problems of evolution in metric spaces and maximal decreasing curve, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 68 (1980), no. 3, 180–187 (Italian, with English summary). MR 636814
- D. Drusvyatskiy, A. D. Ioffe, and A. S. Lewis, Curves of descent, SIAM J. Control Optim. 53 (2015), no. 1, 114–138. MR 3299130, DOI 10.1137/130920216
- Marian J. Fabian, René Henrion, Alexander Y. Kruger, and Jiří V. Outrata, Error bounds: necessary and sufficient conditions, Set-Valued Var. Anal. 18 (2010), no. 2, 121–149. MR 2645246, DOI 10.1007/s11228-010-0133-0
- Wilfrid Gangbo and Andrzej Święch, Metric viscosity solutions of Hamilton-Jacobi equations depending on local slopes, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 1183–1218. MR 3385197, DOI 10.1007/s00526-015-0822-5
- Yoshikazu Giga, Nao Hamamuki, and Atsushi Nakayasu, Eikonal equations in metric spaces, Trans. Amer. Math. Soc. 367 (2015), no. 1, 49–66. MR 3271253, DOI 10.1090/S0002-9947-2014-05893-5
- Alexander D. Ioffe, Variational analysis of regular mappings, Springer Monographs in Mathematics, Springer, Cham, 2017. Theory and applications. MR 3727108, DOI 10.1007/978-3-319-64277-2
- Qing Liu, Nageswari Shanmugalingam, and Xiaodan Zhou, Equivalence of solutions of eikonal equation in metric spaces, J. Differential Equations 272 (2021), 979–1014. MR 4166072, DOI 10.1016/j.jde.2020.10.018
- Matteo Muratori and Giuseppe Savaré, Gradient flows and evolution variational inequalities in metric spaces. I: Structural properties, J. Funct. Anal. 278 (2020), no. 4, 108347, 67. MR 4044740, DOI 10.1016/j.jfa.2019.108347
- Pedro Pérez-Aros, David Salas, and Emilio Vilches, Determination of convex functions via subgradients of minimal norm, Math. Program. 190 (2021), no. 1-2, Ser. A, 561–583. MR 4322652, DOI 10.1007/s10107-020-01550-w
- L. Thibault and D. Zagrodny, Determining functions by slopes, 2021, personal comunication.
Bibliographic Information
- Aris Daniilidis
- Affiliation: DIM-CMM, CNRS IRL 2807, Beauchef 851, FCFM, Universidad de Chile, Santiago, Chile (on leave)
- Address at time of publication: Institute of Statistics and Mathematical Methods in Economics, E105-04, TU Wien, Wiedner Hauptstraße 8, A-1040 Wien, Austria
- MR Author ID: 613204
- ORCID: 0000-0003-4837-694X
- Email: aris.daniilidis@tuwien.ac.at
- David Salas
- Affiliation: Instituto de Ciencias de la Ingenieria, Universidad de O’Higgins, Av. Libertador Bernardo O’Higgins 611, Rancagua, Chile
- MR Author ID: 1165087
- ORCID: 0000-0003-3924-366X
- Email: david.salas@uoh.cl
- Received by editor(s): September 28, 2021
- Received by editor(s) in revised form: December 20, 2021
- Published electronically: May 27, 2022
- Additional Notes: The research of the first author was supported by the grants: CMM ACE210010 and FB210005 BASAL funds for centers of excellence (ANID-Chile), FONDECYT 1211217 (Chile), ECOS-ANID C18E04 (Chile, France). The research of the second author was supported by the grants: CMM ACE210010 and FB210005 BASAL funds for centers of excellence (ANID-Chile), FONDECYT 3190229 (Chile)
- Communicated by: Nageswari Shanmugalingam
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 4325-4333
- MSC (2020): Primary 49J52; Secondary 30L15, 35F30, 37C10, 58E05
- DOI: https://doi.org/10.1090/proc/15958
- MathSciNet review: 4470177