## Positive weights and self-maps

HTML articles powered by AMS MathViewer

- by Fedor Manin PDF
- Proc. Amer. Math. Soc.
**150**(2022), 4557-4566 Request permission

## Abstract:

Spaces with positive weights are those whose rational homotopy type admits a large family of â€śrescalingâ€ť automorphisms. We show that finite complexes with positive weights have many genuine self-maps. We also fix the proofs of some previous related results.## References

- Manuel Amann,
*Degrees of self-maps of simply connected manifolds*, Int. Math. Res. Not. IMRN**18**(2015), 8545â€“8589. MR**3417685**, DOI 10.1093/imrn/rnu201 - Martin Arkowitz and Gregory Lupton,
*Rational obstruction theory and rational homotopy sets*, Math. Z.**235**(2000), no.Â 3, 525â€“539. MR**1800210**, DOI 10.1007/s002090000144 - Igor Belegradek and Vitali Kapovitch,
*Obstructions to nonnegative curvature and rational homotopy theory*, J. Amer. Math. Soc.**16**(2003), no.Â 2, 259â€“284. MR**1949160**, DOI 10.1090/S0894-0347-02-00418-6 - Richard Body, Mamoru Mimura, Hiroo Shiga, and Dennis Sullivan,
*$p$-universal spaces and rational homotopy types*, Comment. Math. Helv.**73**(1998), no.Â 3, 427â€“442. MR**1633367**, DOI 10.1007/s000140050063 - Urtzi Buijs, Federico Cantero MorĂˇn, and Joana Cirici,
*Weight decompositions of Thom spaces of vector bundles in rational homotopy*, J. Homotopy Relat. Struct.**15**(2020), no.Â 1, 1â€“26. MR**4062878**, DOI 10.1007/s40062-019-00243-2 - C. Costoya, V. MuĂ±oz, and A. Viruel,
*On strongly inflexible manifolds*, Int. Math. Res. Not. (2022), rnac064, DOI 10.1093/imrn/rnac064. - Cristina Costoya and Antonio Viruel,
*Every finite group is the group of self-homotopy equivalences of an elliptic space*, Acta Math.**213**(2014), no.Â 1, 49â€“62. MR**3261010**, DOI 10.1007/s11511-014-0115-4 - Diarmuid Crowley and Clara LĂ¶h,
*Functorial seminorms on singular homology and (in)flexible manifolds*, Algebr. Geom. Topol.**15**(2015), no.Â 3, 1453â€“1499. MR**3361142**, DOI 10.2140/agt.2015.15.1453 - Roy Douglas,
*Positive weight homotopy types*, Illinois J. Math.**27**(1983), no.Â 4, 597â€“606. MR**720095** - Yves FĂ©lix, Stephen Halperin, and Jean-Claude Thomas,
*Rational homotopy theory*, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001. MR**1802847**, DOI 10.1007/978-1-4613-0105-9 - Phillip A. Griffiths and John W. Morgan,
*Rational homotopy theory and differential forms*, Progress in Mathematics, vol. 16, BirkhĂ¤user, Boston, Mass., 1981. MR**641551** - Mikhael Gromov,
*Homotopical effects of dilatation*, J. Differential Geometry**13**(1978), no.Â 3, 303â€“310. MR**551562** - Misha Gromov,
*Metric structures for Riemannian and non-Riemannian spaces*, Reprint of the 2001 English edition, Modern BirkhĂ¤user Classics, BirkhĂ¤user Boston, Inc., Boston, MA, 2007. Based on the 1981 French original; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR**2307192** - Mikhael Gromov,
*Quantitative homotopy theory*, Prospects in mathematics (Princeton, NJ, 1996) Amer. Math. Soc., Providence, RI, 1999, pp.Â 45â€“49. MR**1660471** - Fedor Manin,
*Platoâ€™s cave and differential forms*, Geom. Topol.**23**(2019), no.Â 6, 3141â€“3202. MR**4039187**, DOI 10.2140/gt.2019.23.3141 - Fedor Manin and Shmuel Weinberger,
*Integral and rational mapping classes*, Duke Math. J.**169**(2020), no.Â 10, 1943â€“1969. MR**4118644**, DOI 10.1215/00127094-2020-0012 - Mamoru Mimura, Ronald C. Oâ€™Neill, and Hirosi Toda,
*On $p$-equivalence in the sense of Serre*, Jpn. J. Math.**40**(1971), 1â€“10. MR**305399**, DOI 10.4099/jjm1924.40.0_{1} - Mamoru Mimura and Hirosi Toda,
*On $p$-equivalences and $p$-universal spaces*, Comment. Math. Helv.**46**(1971), 87â€“97. MR**285007**, DOI 10.1007/BF02566829 - John W. Morgan,
*The algebraic topology of smooth algebraic varieties*, Inst. Hautes Ă‰tudes Sci. Publ. Math.**48**(1978), 137â€“204. MR**516917** - Hiroo Shiga,
*Rational homotopy type and self-maps*, J. Math. Soc. Japan**31**(1979), no.Â 3, 427â€“434. MR**535089**, DOI 10.2969/jmsj/03130427 - Dennis Sullivan,
*Infinitesimal computations in topology*, Inst. Hautes Ă‰tudes Sci. Publ. Math.**47**(1977), 269â€“331 (1978). MR**646078**

## Additional Information

**Fedor Manin**- Affiliation: Department of Mathematics, University of California, Santa Barbara, California
- MR Author ID: 1165933
- ORCID: 0000-0002-4545-6998
- Email: manin@math.ucsb.edu
- Received by editor(s): August 4, 2021
- Received by editor(s) in revised form: August 5, 2021, and December 31, 2021
- Published electronically: April 29, 2022
- Additional Notes: The author was partly supported by NSF individual grant DMS-2001042.
- Communicated by: Julie Bergner
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**150**(2022), 4557-4566 - MSC (2020): Primary 55P62; Secondary 55Q05
- DOI: https://doi.org/10.1090/proc/15978
- MathSciNet review: 4470195