Convergence of spectral likelihood approximation based on q-Hermite polynomials for Bayesian inverse problems
HTML articles powered by AMS MathViewer
- by Zhiliang Deng and Xiaomei Yang
- Proc. Amer. Math. Soc. 150 (2022), 4699-4713
- DOI: https://doi.org/10.1090/proc/14517
- Published electronically: July 29, 2022
- PDF | Request permission
Abstract:
In this paper, q-Gaussian distribution, q-analogy of Gaussian distribution, is introduced to characterize the prior information of unknown parameters for inverse problems. Based on q-Hermite polynomials, we propose a spectral likelihood approximation (SLA) algorithm of Bayesian inversion. Convergence results of the approximated posterior distribution in the sense of Kullback–Leibler divergence are obtained when the likelihood function is replaced with the SLA and the prior density function is truncated to its partial sum. In the end, two numerical examples are displayed, which verify our results.References
- F. Augustin, A. Gilg, M. Paffrath, P. Rentrop, and U. Wever, Polynomial chaos for the approximation of uncertainties: chances and limits, European J. Appl. Math. 19 (2008), no. 2, 149–190. MR 2400719, DOI 10.1017/S0956792508007328
- R. Askey and Mourad E. H. Ismail, A generalization of ultraspherical polynomials, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 55–78. MR 820210
- Marek Bożejko, Burkhard Kümmerer, and Roland Speicher, $q$-Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys. 185 (1997), no. 1, 129–154. MR 1463036, DOI 10.1007/s002200050084
- Tiangang Cui, Youssef M. Marzouk, and Karen E. Willcox, Data-driven model reduction for the Bayesian solution of inverse problems, Internat. J. Numer. Methods Engrg. 102 (2015), no. 5, 966–990. MR 3341244, DOI 10.1002/nme.4748
- M. Dashti and A. M. Stuart, The Bayesian Approach to Inverse Problems, In: Ghanem R., Higdon D., Owhadi H. (eds.) Handbook of Uncertainty Quantification. Springer, Cham (2015), 1-118, DOI 10.1007/978-3-319-11259-6_7-1.
- M. Frangos, Y. Marzouk, K. Willcox, and B. van Bloemen Waanders, Surrogate and reduced-order modeling: a comparison of approaches for large-scale statistical inverse problems, Large-scale inverse problems and quantification of uncertainty, Wiley Ser. Comput. Stat., Wiley, Chichester, 2011, pp. 123–149. MR 2856654
- Amparo Gil, Javier Segura, and Nico M. Temme, Numerical methods for special functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007. MR 2383071, DOI 10.1137/1.9780898717822
- Dave Higdon, Herbie Lee, and Chris Holloman, Markov chain Monte Carlo-based approaches for inference in computationally intensive inverse problems, Bayesian statistics, 7 (Tenerife, 2002) Oxford Univ. Press, New York, 2003, pp. 181–197. With a discussion by Tony O’Hagan and a reply by the authors. MR 2003173
- Mourad E. H. Ismail, Dennis Stanton, and Gérard Viennot, The combinatorics of $q$-Hermite polynomials and the Askey-Wilson integral, European J. Combin. 8 (1987), no. 4, 379–392. MR 930175, DOI 10.1016/S0195-6698(87)80046-X
- Mourad E. H. Ismail and Ruiming Zhang, A review of multivariate orthogonal polynomials, J. Egyptian Math. Soc. 25 (2017), no. 2, 91–110. MR 3629382, DOI 10.1016/j.joems.2016.11.001
- Mourad E. H. Ismail and Dennis Stanton, Expansions in the Askey-Wilson polynomials, J. Math. Anal. Appl. 424 (2015), no. 1, 664–674. MR 3286586, DOI 10.1016/j.jmaa.2014.11.048
- Mourad E. H. Ismail and Plamen Simeonov, Connection relations and characterizations of orthogonal polynomials, Adv. in Appl. Math. 49 (2012), no. 2, 134–164. MR 2946429, DOI 10.1016/j.aam.2012.04.004
- Lijian Jiang and Na Ou, Bayesian inference using intermediate distribution based on coarse multiscale model for time fractional diffusion equations, Multiscale Model. Simul. 16 (2018), no. 1, 327–355. MR 3766960, DOI 10.1137/17M1110535
- Lijian Jiang and Na Ou, Multiscale model reduction method for Bayesian inverse problems of subsurface flow, J. Comput. Appl. Math. 319 (2017), 188–209. MR 3614222, DOI 10.1016/j.cam.2017.01.007
- Jari Kaipio and Erkki Somersalo, Statistical and computational inverse problems, Applied Mathematical Sciences, vol. 160, Springer-Verlag, New York, 2005. MR 2102218
- Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw, Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010. With a foreword by Tom H. Koornwinder. MR 2656096, DOI 10.1007/978-3-642-05014-5
- Hans van Leeuwen and Hans Maassen, A $q$ deformation of the Gauss distribution, J. Math. Phys. 36 (1995), no. 9, 4743–4756. MR 1347109, DOI 10.1063/1.530917
- Yulong Lu, Andrew Stuart, and Hendrik Weber, Gaussian approximations for probability measures on $\Bbb R^d$, SIAM/ASA J. Uncertain. Quantif. 5 (2017), no. 1, 1136–1165. MR 3724263, DOI 10.1137/16M1105384
- Yulong Lu, Andrew Stuart, and Hendrik Weber, Gaussian approximations for transition paths in Brownian dynamics, SIAM J. Math. Anal. 49 (2017), no. 4, 3005–3047. MR 3684411, DOI 10.1137/16M1071845
- Youssef Marzouk and Dongbin Xiu, A stochastic collocation approach to Bayesian inference in inverse problems, Commun. Comput. Phys. 6 (2009), no. 4, 826–847. MR 2672325, DOI 10.4208/cicp.2009.v6.p826
- Joseph B. Nagel and Bruno Sudret, Spectral likelihood expansions for Bayesian inference, J. Comput. Phys. 309 (2016), 267–294. MR 3454434, DOI 10.1016/j.jcp.2015.12.047
- Akil Narayan, John D. Jakeman, and Tao Zhou, A Christoffel function weighted least squares algorithm for collocation approximations, Math. Comp. 86 (2017), no. 306, 1913–1947. MR 3626543, DOI 10.1090/mcom/3192
- Daniel Sanz-Alonso and Andrew M. Stuart, Gaussian approximations of small noise diffusions in Kullback-Leibler divergence, Commun. Math. Sci. 15 (2017), no. 7, 2087–2097. MR 3717920, DOI 10.4310/CMS.2017.v15.n7.a13
- A. M. Stuart, Inverse problems: a Bayesian perspective, Acta Numer. 19 (2010), 451–559. MR 2652785, DOI 10.1017/S0962492910000061
- Andrew M. Stuart and Aretha L. Teckentrup, Posterior consistency for Gaussian process approximations of Bayesian posterior distributions, Math. Comp. 87 (2018), no. 310, 721–753. MR 3739215, DOI 10.1090/mcom/3244
- PawełJ. Szabłowski, $q$-Gaussian distributions: simplifications and simulations, J. Probab. Stat. , posted on (2009), Art. ID 752430, 18. MR 2602881, DOI 10.1155/2009/752430
- Dongbin Xiu and George Em Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput. 24 (2002), no. 2, 619–644. MR 1951058, DOI 10.1137/S1064827501387826
- Liang Yan and Yuan-Xiang Zhang, Convergence analysis of surrogate-based methods for Bayesian inverse problems, Inverse Problems 33 (2017), no. 12, 125001, 20. MR 3729790, DOI 10.1088/1361-6420/aa9417
- X.-M. Yang and Z.-L. Deng, A data assimilation process for linear ill-posed problems, Math. Methods Appl. Sci. 40 (2017), no. 16, 5831–5840. MR 3713331, DOI 10.1002/mma.4432
- Xiao-Mei Yang and Zhi-Liang Deng, An ensemble Kalman filter approach based on operator splitting for solving nonlinear Hammerstein type ill-posed operator equations, Modern Phys. Lett. B 32 (2018), no. 28, 1850335, 17. MR 3861531, DOI 10.1142/S0217984918503359
Bibliographic Information
- Zhiliang Deng
- Affiliation: School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, People’s Republic of China
- Email: dengzhl@uestc.edu.cn
- Xiaomei Yang
- Affiliation: School of Mathematics, Southwest Jiaotong University, Chengdu, Sichuan, 611756, People’s Republic of China
- MR Author ID: 770852
- Email: yangxiaomath@swjtu.edu.cn, yangxiaomath@163.com
- Received by editor(s): October 5, 2018
- Published electronically: July 29, 2022
- Additional Notes: The first author was supported by NSFC No. 11601067, 11771068, 11501087, the Fundamental Research Funds for the Central Universities ZYGX2018J085.
The second author was supported by Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province No. 2021ZYD0007 and the Fundamental Research Funds for the Central Universities No. 2682018ZT25.
The second author is the corresponding author - Communicated by: Mourad Ismail
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 4699-4713
- MSC (2020): Primary 33F05, 33D45, 65J22
- DOI: https://doi.org/10.1090/proc/14517
- MathSciNet review: 4489306