On infinite MacWilliams rings and minimal injectivity conditions
HTML articles powered by AMS MathViewer
- by Miodrag Cristian Iovanov
- Proc. Amer. Math. Soc. 150 (2022), 4575-4586
- DOI: https://doi.org/10.1090/proc/15929
- Published electronically: August 18, 2022
- PDF | Request permission
Abstract:
We provide a complete answer to the problem of characterizing left Artinian rings which satisfy the (left or right) MacWilliams extension theorem for linear codes, generalizing results of Iovanov [J. Pure Appl. Algebra 220 (2016), pp. 560–576] and Schneider and Zumbrägel [Proc. Amer. Math. Soc. 147 (2019), pp. 947–961] and answering the question of Schneider and Zumbragel [Proc. Amer. Math. Soc. 147 (2019), pp. 947–961]. We show that they are quasi-Frobenius rings, and are precisely the rings which are a product of a finite Frobenius ring and an infinite quasi-Frobenius ring with no non-trivial finite modules (quotients). For this, we give a more general “minimal test for injectivity” for a left Artinian ring $A$: we show that if every injective morphism $\Sigma _k\rightarrow A$ from the $k$’th socle of $A$ extends to a morphism $A\rightarrow A$, then the ring is quasi-Frobenius. We also give a general result under which if injective maps $N\rightarrow M$ from submodules $N$ of a module $M$ extend to endomorphisms of $M$ (pseudo-injectivity), then all such morphisms $N\rightarrow M$ extend (quasi-injectivity) and obtain further applications.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, New York-Heidelberg, 1974. MR 0417223, DOI 10.1007/978-1-4684-9913-1
- Adel Alahmadi, Alberto Facchini, and Nguyen Khanh Tung, Automorphism-invariant modules, Rend. Semin. Mat. Univ. Padova 133 (2015), 241–259. MR 3354953, DOI 10.4171/RSMUP/133-12
- Jan-Erik Björk, Rings satisfying certain chain conditions, J. Reine Angew. Math. 245 (1970), 63–73. MR 277562, DOI 10.1515/crll.1970.245.63
- S. E. Dickson and K. R. Fuller, Algebras for which every indecomposable right module is invariant in its injective envelope, Pacific J. Math. 31 (1969), 655–658. MR 252433, DOI 10.2140/pjm.1969.31.655
- Hai Quang Dinh and Sergio R. López-Permouth, On the equivalence of codes over finite rings, Appl. Algebra Engrg. Comm. Comput. 15 (2004), no. 1, 37–50. MR 2142429, DOI 10.1007/s00200-004-0149-5
- Hai Quang Dinh and Sergio R. López-Permouth, On the equivalence of codes over rings and modules, Finite Fields Appl. 10 (2004), no. 4, 615–625. MR 2094161, DOI 10.1016/j.ffa.2004.01.001
- Jeremy Edison and Miodrag C. Iovanov, On invertible algebras, J. Algebra 538 (2019), 1–34. MR 3990693, DOI 10.1016/j.jalgebra.2019.07.005
- Noyan Er, Surjeet Singh, and Ashish K. Srivastava, Rings and modules which are stable under automorphisms of their injective hulls, J. Algebra 379 (2013), 223–229. MR 3019253, DOI 10.1016/j.jalgebra.2013.01.021
- M. Greferath and S. E. Schmidt, Finite-ring combinatorics and MacWilliams’ equivalence theorem, J. Combin. Theory Ser. A 92 (2000), no. 1, 17–28. MR 1783936, DOI 10.1006/jcta.1999.3033
- Pedro A. Guil Asensio and Ashish K. Srivastava, Additive unit representations in endomorphism rings and an extension of a result of Dickson and Fuller, Ring theory and its applications, Contemp. Math., vol. 609, Amer. Math. Soc., Providence, RI, 2014, pp. 117–121. MR 3204355, DOI 10.1090/conm/609/12092
- Pedro A. Guil Asensio, Derya Keskin Tütüncü, and Ashish K. Srivastava, Modules invariant under automorphisms of their covers and envelopes, Israel J. Math. 206 (2015), no. 1, 457–482. MR 3319648, DOI 10.1007/s11856-014-1147-3
- Manabu Harada, Self mini-injective rings, Osaka Math. J. 19 (1982), no. 3, 587–597. MR 676239
- Manabu Harada, A characterization of QF-algebras, Osaka Math. J. 20 (1983), no. 1, 1–4. MR 695611
- Thomas Honold, Characterization of finite Frobenius rings, Arch. Math. (Basel) 76 (2001), no. 6, 406–415. MR 1831096, DOI 10.1007/PL00000451
- M. C. Iovanov, On semi-primary self-injective rings and Faith’s quasi-Frobenius conjecture, Proc. Edinb. Math. Soc. (2) 58 (2015), no. 1, 219–229. MR 3333986, DOI 10.1017/S0013091514000443
- Miodrag Cristian Iovanov, Frobenius-Artin algebras and infinite linear codes, J. Pure Appl. Algebra 220 (2016), no. 2, 560–576. MR 3399378, DOI 10.1016/j.jpaa.2015.05.030
- Lars Kadison, New examples of Frobenius extensions, University Lecture Series, vol. 14, American Mathematical Society, Providence, RI, 1999. MR 1690111, DOI 10.1090/ulect/014
- Dinesh Khurana and Ashish K. Srivastava, Right self-injective rings in which every element is a sum of two units, J. Algebra Appl. 6 (2007), no. 2, 281–286. MR 2316422, DOI 10.1142/S0219498807002181
- Sergio R. López-Permouth, Jeremy Moore, Nick Pilewski, and Steve Szabo, Algebras having bases that consist solely of units, Israel J. Math. 208 (2015), no. 1, 461–482. MR 3416929, DOI 10.1007/s11856-015-1208-2
- Florence Jessie MacWilliams, COMBINATORIAL PROBLEMS OF ELEMENTARY ABELIAN GROUPS, ProQuest LLC, Ann Arbor, MI, 1962. Thesis (Ph.D.)–Radcliffe College. MR 2939359
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Tadasi Nakayama, On Frobeniusean algebras. II, Ann. of Math. (2) 42 (1941), 1–21. MR 4237, DOI 10.2307/1968984
- Tadasi Nakayama, On Frobeniusean algebras. III, Jpn. J. Math. 18 (1942), 49–65. MR 15048, DOI 10.4099/jjm1924.18.0_{4}9
- Tadasi Nakayama, Supplementary remarks on Frobeniusean algebras. I, Proc. Japan Acad. 25 (1949), no. 7, 45–50. MR 41116
- W. K. Nicholson and M. F. Yousif, Mininjective rings, J. Algebra 187 (1997), no. 2, 548–578. MR 1430998, DOI 10.1006/jabr.1996.6796
- W. K. Nicholson and M. F. Yousif, Quasi-Frobenius rings, Cambridge Tracts in Mathematics, vol. 158, Cambridge University Press, Cambridge, 2003. MR 2003785, DOI 10.1017/CBO9780511546525
- Harold N. Ward and Jay A. Wood, Characters and the equivalence of codes, J. Combin. Theory Ser. A 73 (1996), no. 2, 348–352. MR 1370137, DOI 10.1016/S0097-3165(96)80011-2
- Jay A. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math. 121 (1999), no. 3, 555–575. MR 1738408, DOI 10.1353/ajm.1999.0024
- Jay A. Wood, Code equivalence characterizes finite Frobenius rings, Proc. Amer. Math. Soc. 136 (2008), no. 2, 699–706. MR 2358511, DOI 10.1090/S0002-9939-07-09164-2
- Friedrich Martin Schneider and Jens Zumbrägel, MacWilliams’ extension theorem for infinite rings, Proc. Amer. Math. Soc. 147 (2019), no. 3, 947–961. MR 3896045, DOI 10.1090/proc/14343
- Kenneth G. Wolfson, An ideal-theoretic characterization of the ring of all linear transformations, Amer. J. Math. 75 (1953), 358–386. MR 53080, DOI 10.2307/2372458
- M. F. Yousif, Private communication, 2018.
- Daniel Zelinsky, Every linear transformation is a sum of nonsingular ones, Proc. Amer. Math. Soc. 5 (1954), 627–630. MR 62728, DOI 10.1090/S0002-9939-1954-0062728-7
Bibliographic Information
- Miodrag Cristian Iovanov
- Affiliation: Department of Mathematics, University of Iowa, McLean Hall, Iowa City, Iowa 52245; and University of Bucharest, Faculty of Mathematics, Str. Academiei 14, RO-010014, Bucharest, Romania
- MR Author ID: 743470
- Email: miodrag-iovanov@uiowa.edu, yovanov@gmail.com
- Received by editor(s): January 17, 2019
- Received by editor(s) in revised form: December 12, 2020
- Published electronically: August 18, 2022
- Communicated by: Jerzy Weyman
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 4575-4586
- MSC (2020): Primary 16D50, 16P20, 94B05, 11T71
- DOI: https://doi.org/10.1090/proc/15929
- MathSciNet review: 4489297