Induced model structures for higher categories
HTML articles powered by AMS MathViewer
- by Philip Hackney and Martina Rovelli
- Proc. Amer. Math. Soc. 150 (2022), 4629-4644
- DOI: https://doi.org/10.1090/proc/15982
- Published electronically: June 10, 2022
Abstract:
We give a new criterion guaranteeing existence of model structures left-induced along a functor admitting both adjoints. This works under the hypothesis that the functor induces idempotent adjunctions at the homotopy category level. As an application, we construct new model structures on cubical sets, prederivators, marked simplicial sets and simplicial spaces modeling $\infty$-categories and $\infty$-groupoids.References
- Georg Biedermann, Truncated resolution model structures, J. Pure Appl. Algebra 208 (2007), no. 2, 591–601. MR 2277698, DOI 10.1016/j.jpaa.2006.03.008
- Clemens Berger and Ieke Moerdijk, On an extension of the notion of Reedy category, Math. Z. 269 (2011), no. 3-4, 977–1004. MR 2860274, DOI 10.1007/s00209-010-0770-x
- Ulrik Buchholtz and Edward Morehouse, Varieties of cubical sets, Relational and algebraic methods in computer science, Lecture Notes in Comput. Sci., vol. 10226, Springer, Cham, 2017, pp. 77–92. MR 3668732, DOI 10.1007/978-3-319-57418-9_{5}
- Julia E. Bergner and Charles Rezk, Reedy categories and the $\varTheta$-construction, Math. Z. 274 (2013), no. 1-2, 499–514. MR 3054341, DOI 10.1007/s00209-012-1082-0
- Alexander Campbell, Joyal’s cylinder conjecture, Adv. Math. 389 (2021), Paper No. 107895, 40. MR 4289037, DOI 10.1016/j.aim.2021.107895
- Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg, Cubical type theory: a constructive interpretation of the univalence axiom, 21st International Conference on Types for Proofs and Programs (TYPES 2015) (Dagstuhl, Germany) (Tarmo Uustalu, ed.), Leibniz International Proceedings in Informatics (LIPIcs), vol. 69, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018, pp. 5:1–5:34.
- Denis-Charles Cisinski, Les préfaisceaux comme modèles des types d’homotopie, Astérisque 308 (2006), xxiv+390 (French, with English and French summaries). MR 2294028
- Tim Campion, Krzysztof Kapulkin, and Yuki Maehara, A cubical model for $(\infty ,n)$-categories, arXiv:2005.07603v2, 2020.
- Evan Cavallo, Anders Mörtberg, and Andrew W Swan, Unifying Cubical Models of Univalent Type Theory, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020) (Dagstuhl, Germany) (Maribel Fernández and Anca Muscholl, eds.), Leibniz International Proceedings in Informatics (LIPIcs), vol. 152, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020, pp. 14:1–14:17.
- Gabriel C. Drummond-Cole and Philip Hackney, A criterion for existence of right-induced model structures, Bull. Lond. Math. Soc. 51 (2019), no. 2, 309–326. MR 3937590, DOI 10.1112/blms.12232
- William G. Dwyer, Philip S. Hirschhorn, Daniel M. Kan, and Jeffrey H. Smith, Homotopy limit functors on model categories and homotopical categories, Mathematical Surveys and Monographs, vol. 113, American Mathematical Society, Providence, RI, 2004. MR 2102294, DOI 10.1090/surv/113
- Brandon Doherty, Krzysztof Kapulkin, Zachery Lindsey, and Christian Sattler, Cubical models of $(\infty ,1)$-categories, arXiv:2005.04853v2, 2020.
- Daniel Dugger and David I. Spivak, Mapping spaces in quasi-categories, Algebr. Geom. Topol. 11 (2011), no. 1, 263–325. MR 2764043, DOI 10.2140/agt.2011.11.263
- Roy Dyckhoff and Walter Tholen, Exponentiable morphisms, partial products and pullback complements, J. Pure Appl. Algebra 49 (1987), no. 1-2, 103–116. MR 920516, DOI 10.1016/0022-4049(87)90124-1
- Daniel Fuentes-Keuthan, Magdalena Kędziorek, and Martina Rovelli, A model structure on prederivators for $(\infty ,1)$-categories, Theory Appl. Categ. 34 (2019), Paper No. 39, 1220–1245. MR 4039244
- Richard Garner, Magdalena Kȩdziorek, and Emily Riehl, Lifting accessible model structures, J. Topol. 13 (2020), no. 1, 59–76. MR 3999672, DOI 10.1112/topo.12123
- Marco Grandis and Luca Mauri, Cubical sets and their site, Theory Appl. Categ. 11 (2003), No. 8, 185–211. MR 1988396
- Philip S. Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99, American Mathematical Society, Providence, RI, 2003. MR 1944041, DOI 10.1090/surv/099
- Kathryn Hess, Magdalena Kȩdziorek, Emily Riehl, and Brooke Shipley, A necessary and sufficient condition for induced model structures, J. Topol. 10 (2017), no. 2, 324–369. MR 3653314, DOI 10.1112/topo.12011
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- J. F. Jardine, Categorical homotopy theory, Homology Homotopy Appl. 8 (2006), no. 1, 71–144. MR 2205215, DOI 10.4310/HHA.2006.v8.n1.a3
- J. F. Jardine, Intermediate model structures for simplicial presheaves, Canad. Math. Bull. 49 (2006), no. 3, 407–413. MR 2252262, DOI 10.4153/CMB-2006-040-8
- Peter Johnstone, Remarks on punctual local connectedness, Theory Appl. Categ. 25 (2011), No. 3, 51–63. MR 2805745
- André Joyal and Myles Tierney, Quasi-categories vs Segal spaces, Categories in algebra, geometry and mathematical physics, Contemp. Math., vol. 431, Amer. Math. Soc., Providence, RI, 2007, pp. 277–326. MR 2342834, DOI 10.1090/conm/431/08278
- G. M. Kelly, Basic concepts of enriched category theory, Repr. Theory Appl. Categ. 10 (2005), vi+137. Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714]. MR 2177301
- Krzysztof Kapulkin and Vladimir Voevodsky, A cubical approach to straightening, J. Topol. 13 (2020), no. 4, 1682–1700. MR 4186141, DOI 10.1112/topo.12173
- Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659, DOI 10.1515/9781400830558
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Georges Maltsiniotis, La catégorie cubique avec connexions est une catégorie test stricte, Homology Homotopy Appl. 11 (2009), no. 2, 309–326 (French, with English summary). MR 2591923, DOI 10.4310/HHA.2009.v11.n2.a15
- Charles Rezk, A model for the homotopy theory of homotopy theory, Trans. Amer. Math. Soc. 353 (2001), no. 3, 973–1007. MR 1804411, DOI 10.1090/S0002-9947-00-02653-2
- Emily Riehl, Categorical homotopy theory, New Mathematical Monographs, vol. 24, Cambridge University Press, Cambridge, 2014. MR 3221774, DOI 10.1017/CBO9781107261457
- Emily Riehl, Complicial sets, an overture, 2016 MATRIX annals, MATRIX Book Ser., vol. 1, Springer, Cham, 2018, pp. 49–76. MR 3792516
- Christian Sattler, Idempotent completion of cubes in posets, arXiv:1805.04126v2, 2018.
- Christian Sattler, Do cubical models of type theory also model homotopy types, Talk in ‘Workshop: Types, Homotopy Type Theory, and Verification’ at the Hausdorff Research Institute for Mathematics, June 2018, Video available at https://www.youtube.com/watch?v=wkPDyIGmEoA.
- Michael Shulman, Comparing composites of left and right derived functors, New York J. Math. 17 (2011), 75–125. MR 2781909
- Alexandru E. Stanculescu, Note on a theorem of Bousfield and Friedlander, Topology Appl. 155 (2008), no. 13, 1434–1438. MR 2427416, DOI 10.1016/j.topol.2008.05.003
- Thomas Streicher and Jonathan Weinberger, Simplicial sets inside cubical sets, Theory Appl. Categ. 37 (2021), 276–286. MR 4231814
Bibliographic Information
- Philip Hackney
- Affiliation: Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana
- MR Author ID: 758568
- ORCID: 0000-0001-8050-7431
- Email: philip@phck.net
- Martina Rovelli
- Affiliation: Department of Mathematics and Statistics, University of Massachusetts Amherst, Massachusetts 01003-9305
- MR Author ID: 1204481
- Email: rovelli@math.umass.edu
- Received by editor(s): February 15, 2021
- Received by editor(s) in revised form: January 5, 2022, and January 12, 2022
- Published electronically: June 10, 2022
- Additional Notes: This work was supported by the National Science Foundation under Grant No. DMS-1440140 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Spring 2020 semester.
- Communicated by: Julie Bergner
- © Copyright 2022 by the authors
- Journal: Proc. Amer. Math. Soc. 150 (2022), 4629-4644
- MSC (2020): Primary 18N60, 55U35, 18N40; Secondary 18A40, 18N50, 55U10
- DOI: https://doi.org/10.1090/proc/15982
- MathSciNet review: 4489301