The moduli space of stable rank 2 parabolic bundles over an elliptic curve with 3 marked points
HTML articles powered by AMS MathViewer
- by David Boozer
- Proc. Amer. Math. Soc. 150 (2022), 4645-4653
- DOI: https://doi.org/10.1090/proc/15996
- Published electronically: August 12, 2022
- PDF | Request permission
Abstract:
We explicitly describe the moduli space $M^s(X,3)$ of stable rank 2 parabolic bundles over an elliptic curve $X$ with trivial determinant bundle and 3 marked points. Specifically, we exhibit $M^s(X,3)$ as a blow-up of an embedded elliptic curve in $(\mathbb {CP}^1)^3$. The moduli space $M^s(X,3)$ can also be interpreted as the $SU(2)$ character variety of the 3-punctured torus. Our description of $M^s(X,3)$ reproduces the known Poincaré polynomial for this space.References
- M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414–452. MR 131423, DOI 10.1112/plms/s3-7.1.414
- Hans U. Boden and Yi Hu, Variations of moduli of parabolic bundles, Math. Ann. 301 (1995), no. 3, 539–559. MR 1324526, DOI 10.1007/BF01446645
- David Boozer, Holonomy perturbations of the Chern-Simons functional for lens spaces, Indiana Univ. Math. J. 70 (2021), no. 5, 2065–2106. MR 4340489, DOI 10.1512/iumj.2021.70.9360
- David Boozer, Moduli spaces of Hecke modifications for rational and elliptic curves, Algebr. Geom. Topol. 21 (2021), no. 2, 543–600. MR 4250511, DOI 10.2140/agt.2021.21.543
- Matthew Hedden, Christopher M. Herald, and Paul Kirk, The pillowcase and perturbations of traceless representations of knot groups, Geom. Topol. 18 (2014), no. 1, 211–287. MR 3158776, DOI 10.2140/gt.2014.18.211
- Matthew Hedden, Christopher M. Herald, and Paul Kirk, The pillowcase and traceless representations of knot groups II: a Lagrangian-Floer theory in the pillowcase, J. Symplectic Geom. 16 (2018), no. 3, 721–815. MR 3882172, DOI 10.4310/JSG.2018.v16.n3.a5
- Henry T. Horton, A Symplectic Instanton Homology via Traceless Character Varieties, ProQuest LLC, Ann Arbor, MI, 2017. Thesis (Ph.D.)–Indiana University. MR 3732048
- Oleksandr Iena, Vector bundles on elliptic curves and factors of automorphy, Rend. Istit. Mat. Univ. Trieste 43 (2011), 61–94. MR 2933124
- Paul Kirk, On the traceless $\textrm {SU}(2)$ character variety of the 6-punctured 2-sphere, J. Knot Theory Ramifications 26 (2017), no. 2, 1740009, 21. MR 3604491, DOI 10.1142/S0218216517400090
- V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980), no. 3, 205–239. MR 575939, DOI 10.1007/BF01420526
- E. J. Street, Recursive relations in the cohomology ring of moduli spaces of rank 2 parabolic bundles on the Riemann sphere, Preprint, arXiv:1205.1730, 2012.
- M. Teixidor i Bigas, Vector bundles on curves, http://emerald.tufts.edu/~mteixido/files/vectbund.pdf, Accessed 2018-05-23.
- Michael Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), no. 3, 691–723. MR 1333296, DOI 10.1090/S0894-0347-96-00204-4
- Loring W. Tu, Semistable bundles over an elliptic curve, Adv. Math. 98 (1993), no. 1, 1–26. MR 1212625, DOI 10.1006/aima.1993.1011
- Néstor Fernández Vargas, Geometry of the moduli of parabolic bundles on elliptic curves, Trans. Amer. Math. Soc. 374 (2021), no. 5, 3025–3052. MR 4237941, DOI 10.1090/tran/7330
Bibliographic Information
- David Boozer
- Affiliation: Department of Mathematics, Princeton University, Princeton, New Jersey 08544
- ORCID: 0000-0001-6744-8019
- Email: adboozer@princeton.edu
- Received by editor(s): March 9, 2021
- Received by editor(s) in revised form: January 18, 2022
- Published electronically: August 12, 2022
- Communicated by: Romyar T. Sharifi
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 4645-4653
- MSC (2020): Primary 14H60, 14H52
- DOI: https://doi.org/10.1090/proc/15996
- MathSciNet review: 4489302