A note on elementarity of virtual dendro-morphisms for higher rank lattices
HTML articles powered by AMS MathViewer
- by A. Savini
- Proc. Amer. Math. Soc. 150 (2022), 4995-5008
- DOI: https://doi.org/10.1090/proc/16024
- Published electronically: July 15, 2022
- PDF | Request permission
Abstract:
Let $\Gamma$ be a discrete countable group and let $(\Omega ,\mu )$ be an ergodic standard Borel probability $\Gamma$-space. Given any non-elementary virtual dendro-morphism (that is a measurable cocycle in the automorphism group of a dendrite), we construct a unitary representation $V$ with no invariant vectors such that $\operatorname {H}^2_b(\Gamma ;V)$ contains a non-zero class. As a consequence, all virtual dendro-morphisms of a higher rank lattice must be elementary.References
- Uri Bader and Alex Furman, Boundaries, rigidity of representations, and Lyapunov exponents, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. III, Kyung Moon Sa, Seoul, 2014, pp. 71–96. MR 3729019
- U. Bader, A. Furman, and A. Shaker, Superrigidity, weyl groups and actions on the circle, arXiv: 0605276, 2006.
- M. Burger and N. Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 2, 199–235. MR 1694584, DOI 10.1007/s100970050007
- M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002), no. 2, 219–280. MR 1911660, DOI 10.1007/s00039-002-8245-9
- Henk Bruin and Mike Todd, Markov extensions and lifting measures for complex polynomials, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 743–768. MR 2322177, DOI 10.1017/S0143385706000976
- Bruno Duchesne and Nicolas Monod, Group actions on dendrites and curves, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 5, 2277–2309 (English, with English and French summaries). MR 3893770, DOI 10.5802/aif.3209
- Bruno Duchesne and Nicolas Monod, Structural properties of dendrite groups, Trans. AMS 3 (2019), no. 1, 1925–1949.
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- Harry Furstenberg, Rigidity and cocycles for ergodic actions of semisimple Lie groups (after G. A. Margulis and R. Zimmer), Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math., vol. 842, Springer, Berlin-New York, 1981, pp. 273–292. MR 636529
- Étienne Ghys, Groupes d’homéomorphismes du cercle et cohomologie bornée, The Lefschetz centennial conference, Part III (Mexico City, 1984) Contemp. Math., vol. 58, Amer. Math. Soc., Providence, RI, 1987, pp. 81–106 (French, with English summary). MR 893858, DOI 10.24033/msmf.358
- Étienne Ghys, Actions de réseaux sur le cercle, Invent. Math. 137 (1999), no. 1, 199–231 (French). MR 1703323, DOI 10.1007/s002220050329
- Camille Jordan, Sur les assemblages de lignes, J. Reine Angew. Math. 70 (1869), 185–190 (French). MR 1579443, DOI 10.1515/crll.1869.70.185
- Casimir Kuratowski, Topologie. Vol. II, Monografie Matematyczne, Tom 21, Państwowe Wydawnictwo Naukowe, Warsaw, 1961 (French). Troisième édition, corrigèe et complétée de deux appendices. MR 0133124
- George W. Mackey, Ergodic theory and virtual groups, Math. Ann. 166 (1966), 187–207. MR 201562, DOI 10.1007/BF01361167
- G. A. Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 17, Springer-Verlag, Berlin, 1991. MR 1090825, DOI 10.1007/978-3-642-51445-6
- Nicolas Monod, Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, vol. 1758, Springer-Verlag, Berlin, 2001. MR 1840942, DOI 10.1007/b80626
- Nicolas Monod and Yehuda Shalom, Cocycle superrigidity and bounded cohomology for negatively curved spaces, J. Differential Geom. 67 (2004), no. 3, 395–455. MR 2153026
- Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
- Andrés Navas, Reduction of cocycles and groups of diffeomorphisms of the circle, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 2, 193–205. MR 2259900
- A. Savini, Parametrized euler class and semicohomology theory, arXiv:2101.11971, 2021.
- F. Sarti and A. Savini, Finite reducibility of maximal infinite dimensional measurable cocycles of complex hyperbolic lattices, https://arxiv.org/abs/2005.10529, 2020.
- F. Sarti and A. Savini, Superrigidity of maximal measurable cocycles of complex hyperbolic lattices, Math. Z. 300 (2022), no. 1, 421–443. MR 4359531, DOI 10.1007/s00209-021-02801-y
- Enhui Shi and Xiangdong Ye, Periodic points for amenable group actions on dendrites, Proc. Amer. Math. Soc. 145 (2017), no. 1, 177–184. MR 3565370, DOI 10.1090/proc/13206
- Tadé Ważewski, Sur les courbes de Jordan ne renfermant aucune courbe simple fermée de Jordan, NUMDAM, [place of publication not identified], 1923 (French). MR 3532906
- Gordon T. Whyburn, Concerning the Structure of a Continuous Curve, Amer. J. Math. 50 (1928), no. 2, 167–194. MR 1506664, DOI 10.2307/2371754
- Gordon T. Whyburn, On the set of all cut points of a continuous curve, Fundam. Math. 15 (1930), no. 1, 185–194.
- Dave Witte and Robert J. Zimmer, Actions of semisimple Lie groups on circle bundles, Geom. Dedicata 87 (2001), no. 1-3, 91–121. MR 1866844, DOI 10.1023/A:1012068331112
- Robert J. Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984. MR 776417, DOI 10.1007/978-1-4684-9488-4
Bibliographic Information
- A. Savini
- Affiliation: Section de Mathématiques, University of Geneva, Rue du Conseil General 7-9, 1205 Geneva, Switzerland
- MR Author ID: 1339097
- ORCID: 0000-0003-4652-9201
- Email: alessio.savini@unige.ch
- Received by editor(s): December 14, 2021
- Received by editor(s) in revised form: January 25, 2022
- Published electronically: July 15, 2022
- Communicated by: Katrin Gelfert
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 4995-5008
- MSC (2020): Primary 22D10; Secondary 37B05
- DOI: https://doi.org/10.1090/proc/16024
- MathSciNet review: 4489330