Directional mean dimension and continuum-wise expansive $\mathbb {Z}^k$-actions
HTML articles powered by AMS MathViewer
- by Sebastián Donoso, Lei Jin, Alejandro Maass and Yixiao Qiao
- Proc. Amer. Math. Soc. 150 (2022), 4841-4853
- DOI: https://doi.org/10.1090/proc/16027
- Published electronically: July 29, 2022
- PDF | Request permission
Abstract:
We study directional mean dimension of $\mathbb {Z}^k$-actions (where $k$ is a positive integer). On the one hand, we show that there is a $\mathbb {Z}^2$-action whose directional mean dimension (considered as a $[0,+\infty ]$-valued function on the torus) is not continuous. On the other hand, we prove that if a $\mathbb {Z}^k$-action is continuum-wise expansive, then the values of its $(k-1)$-dimensional directional mean dimension are bounded. This is a generalization (with a view towards Meyerovitch and Tsukamoto’s theorem on mean dimension and expansive multiparameter actions) of a classical result due to Mañé: Any compact metrizable space admitting an expansive homeomorphism (with respect to a compatible metric) is finite-dimensional.References
- Rufus Bowen, Entropy-expansive maps, Trans. Amer. Math. Soc. 164 (1972), 323–331. MR 285689, DOI 10.1090/S0002-9947-1972-0285689-X
- Mike Boyle and Douglas Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1997), no. 1, 55–102. MR 1355295, DOI 10.1090/S0002-9947-97-01634-6
- Michel Coornaert, Topological dimension and dynamical systems, Universitext, Springer, Cham, 2015. Translated and revised from the 2005 French original. MR 3242807, DOI 10.1007/978-3-319-19794-4
- Misha Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom. 2 (1999), no. 4, 323–415. MR 1742309, DOI 10.1023/A:1009841100168
- Yonatan Gutman, Elon Lindenstrauss, and Masaki Tsukamoto, Mean dimension of $\Bbb {Z}^k$-actions, Geom. Funct. Anal. 26 (2016), no. 3, 778–817. MR 3540453, DOI 10.1007/s00039-016-0372-9
- Yonatan Gutman, Yixiao Qiao, and Masaki Tsukamoto, Application of signal analysis to the embedding problem of $\Bbb Z^k$-actions, Geom. Funct. Anal. 29 (2019), no. 5, 1440–1502. MR 4025517, DOI 10.1007/s00039-019-00499-z
- Yonatan Gutman and Masaki Tsukamoto, Embedding minimal dynamical systems into Hilbert cubes, Invent. Math. 221 (2020), no. 1, 113–166. MR 4105086, DOI 10.1007/s00222-019-00942-w
- Hisao Kato, Continuum-wise expansive homeomorphisms, Canad. J. Math. 45 (1993), no. 3, 576–598. MR 1222517, DOI 10.4153/CJM-1993-030-4
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- Elon Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Inst. Hautes Études Sci. Publ. Math. 89 (1999), 227–262 (2000). MR 1793417, DOI 10.1007/BF02698858
- Elon Lindenstrauss and Masaki Tsukamoto, From rate distortion theory to metric mean dimension: variational principle, IEEE Trans. Inform. Theory 64 (2018), no. 5, 3590–3609. MR 3798396, DOI 10.1109/TIT.2018.2806219
- Elon Lindenstrauss and Masaki Tsukamoto, Double variational principle for mean dimension, Geom. Funct. Anal. 29 (2019), no. 4, 1048–1109. MR 3990194, DOI 10.1007/s00039-019-00501-8
- Elon Lindenstrauss and Benjamin Weiss, Mean topological dimension, Israel J. Math. 115 (2000), 1–24. MR 1749670, DOI 10.1007/BF02810577
- Ricardo Mañé, Expansive homeomorphisms and topological dimension, Trans. Amer. Math. Soc. 252 (1979), 313–319. MR 534124, DOI 10.1090/S0002-9947-1979-0534124-9
- Tom Meyerovitch and Masaki Tsukamoto, Expansive multiparameter actions and mean dimension, Trans. Amer. Math. Soc. 371 (2019), no. 10, 7275–7299. MR 3939578, DOI 10.1090/tran/7588
- Sam B. Nadler Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR 0500811
- Sam B. Nadler Jr., Continuum theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 158, Marcel Dekker, Inc., New York, 1992. An introduction. MR 1192552
- William L. Reddy, Pointwise expansion homeomorphisms, J. London Math. Soc. (2) 2 (1970), 232–236. MR 258009, DOI 10.1112/jlms/s2-2.2.232
- Sol Schwartzman, ON TRANSFORMATION GROUPS, ProQuest LLC, Ann Arbor, MI, 1953. Thesis (Ph.D.)–Yale University. MR 2938482
- En Hui Shi and Li Zhen Zhou, The nonexistence of expansive $\Bbb Z^d$ actions on graphs, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1509–1514. MR 2190021, DOI 10.1007/s10114-005-0640-3
- W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769–774. MR 38022, DOI 10.1090/S0002-9939-1950-0038022-3
Bibliographic Information
- Sebastián Donoso
- Affiliation: Departamento de Ingeniería Matemática, Centro de Modelamiento Matemático, CNRS IRL 2807, Universidad de Chile
- ORCID: 0000-0001-9870-7984
- Email: sdonoso@dim.uchile.cl
- Lei Jin
- Affiliation: Centro de Modelamiento Matemático, CNRS IRL 2807, Universidad de Chile
- Email: jinleim@impan.pl
- Alejandro Maass
- Affiliation: Departamento de Ingeniería Matemática, Centro de Modelamiento Matemático, CNRS IRL 2807, Universidad de Chile
- MR Author ID: 315077
- ORCID: 0000-0002-7038-4527
- Email: amaass@dim.uchile.cl
- Yixiao Qiao
- Affiliation: School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou, 510006, China
- Email: yxqiao@gdut.edu.cn
- Received by editor(s): August 13, 2021
- Received by editor(s) in revised form: January 18, 2022, and January 26, 2022
- Published electronically: July 29, 2022
- Additional Notes: The first author was supported by Centro de Modelamiento Matemático (CMM), ACE210010 and FB210005, BASAL funds for centers of excellence from ANID-Chile, and ANID/Fondecyt/1200897
The second author was supported by Basal Funding AFB 170001 and ANID/Fondecyt/3190127, and was partially supported by NNSF of China No. 11971455
The third author was supported by Centro de Modelamiento Matemático (CMM), ACE210010 and FB210005, BASAL funds for centers of excellence from ANID-Chile
The fourth author was supported by NNSF of China No. 11901206 - Communicated by: Katrin Gelfert
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 150 (2022), 4841-4853
- MSC (2020): Primary 37B05
- DOI: https://doi.org/10.1090/proc/16027
- MathSciNet review: 4489317