A Bernstein type theorem for ancient solutions to the mean curvature flow in arbitrary codimension
HTML articles powered by AMS MathViewer
- by Li Guan, Hongwei Xu and Entao Zhao;
- Proc. Amer. Math. Soc. 151 (2023), 269-279
- DOI: https://doi.org/10.1090/proc/16078
- Published electronically: September 2, 2022
- HTML | PDF | Request permission
Abstract:
We prove a Bernstein type theorem for ancient solutions to the mean curvature flow in higher codimension. More precisely, we show that for a complete ancient solution $\{M_t\}_{t\in (-\infty ,0)}$, if the mean curvature vector is uniformly bounded and the $\omega$-function for $M_t$ satisfies $\omega \geq \omega _0$ uniformly for some constant $\omega _0>\frac {1}{\sqrt {2}}$, then $M_t$ must be an affine subspace for each $t\in (-\infty ,0)$.References
- Sigurd Angenent, Panagiota Daskalopoulos, and Natasa Sesum, Unique asymptotics of ancient convex mean curvature flow solutions, J. Differential Geom. 111 (2019), no. 3, 381–455. MR 3934596, DOI 10.4310/jdg/1552442605
- Chao Bao and Yuguang Shi, Gauss maps of translating solitons of mean curvature flow, Proc. Amer. Math. Soc. 142 (2014), no. 12, 4333–4339. MR 3267001, DOI 10.1090/S0002-9939-2014-12209-X
- Simon Brendle and Kyeongsu Choi, Uniqueness of convex ancient solutions to mean curvature flow in $\Bbb R^3$, Invent. Math. 217 (2019), no. 1, 35–76. MR 3958790, DOI 10.1007/s00222-019-00859-4
- Simon Brendle and Kyeongsu Choi, Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions, Preprint, arXiv:1804.00018, 2018.
- S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York-Berlin, 1970, pp. 59–75. MR 273546
- Kyeongsu Choi and Christos Mantoulidis, Ancient gradient flows of elliptic functionals and Morse index, Amer. J. Math. 144 (2022), no. 2, 541–573. MR 4401511, DOI 10.1353/ajm.2022.0010
- Robert Haslhofer and Or Hershkovits, Ancient solutions of the mean curvature flow, Comm. Anal. Geom. 24 (2016), no. 3, 593–604. MR 3521319, DOI 10.4310/CAG.2016.v24.n3.a6
- D. Hoffman, T. Ilmanen, F. Martín, and B. White, Graphical translators for mean curvature flow, Calc. Var. Partial Differential Equations 58 (2019), no. 4, Paper No. 117, 29. MR 3962912, DOI 10.1007/s00526-019-1560-x
- Gerhard Huisken and Carlo Sinestrari, Convex ancient solutions of the mean curvature flow, J. Differential Geom. 101 (2015), no. 2, 267–287. MR 3399098
- J. Jost, Y. L. Xin, and Ling Yang, A spherical Bernstein theorem for minimal submanifolds of higher codimension, Calc. Var. Partial Differential Equations 57 (2018), no. 6, Paper No. 166, 21. MR 3863563, DOI 10.1007/s00526-018-1439-2
- Keita Kunikawa, Bernstein-type theorem of translating solitons in arbitrary codimension with flat normal bundle, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1331–1344. MR 3396413, DOI 10.1007/s00526-015-0826-1
- Keita Kunikawa, A Bernstein type theorem of ancient solutions to the mean curvature flow, Proc. Amer. Math. Soc. 144 (2016), no. 3, 1325–1333. MR 3447682, DOI 10.1090/proc/12802
- Keita Kunikawa, Translating solitons in arbitrary codimension, Asian J. Math. 21 (2017), no. 5, 855–872. MR 3767268, DOI 10.4310/AJM.2017.v21.n5.a4
- H. Blaine Lawson Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math. (2) 89 (1969), 187–197. MR 238229, DOI 10.2307/1970816
- Li Lei, Hongwei Xu, and Entao Zhao, Ancient solution of mean curvature flow in space forms, Trans. Amer. Math. Soc. 374 (2021), no. 4, 2359–2381. MR 4223019, DOI 10.1090/tran/8267
- Li An-Min and Li Jimin, An intrinsic rigidity theorem for minimal submanifolds in a sphere, Arch. Math. (Basel) 58 (1992), no. 6, 582–594. MR 1161925, DOI 10.1007/BF01193528
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- Xiaobo Liu and Chuu-Lian Terng, Ancient solutions to mean curvature flow for isoparametric submanifolds, Math. Ann. 378 (2020), no. 1-2, 289–315. MR 4150919, DOI 10.1007/s00208-020-02055-9
- Stephen Lynch and Huy The Nguyen, Pinched ancient solutions to the high codimension mean curvature flow, Calc. Var. Partial Differential Equations 60 (2021), no. 1, Paper No. 29, 14. MR 4201652, DOI 10.1007/s00526-020-01888-1
- Philippe Souplet and Qi S. Zhang, Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. 38 (2006), no. 6, 1045–1053. MR 2285258, DOI 10.1112/S0024609306018947
- Susanna Risa and Carlo Sinestrari, Ancient solutions of geometric flows with curvature pinching, J. Geom. Anal. 29 (2019), no. 2, 1206–1232. MR 3935256, DOI 10.1007/s12220-018-0036-0
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 233295, DOI 10.2307/1970556
- Joel Spruck and Ling Xiao, Complete translating solitons to the mean curvature flow in $\Bbb R^3$ with nonnegative mean curvature, Amer. J. Math. 142 (2020), no. 3, 993–1015. MR 4101337, DOI 10.1353/ajm.2020.0023
- Huijuan Wang, Hongwei Xu, and Entao Zhao, A global pinching theorem for complete translating solitons of mean curvature flow, Pure Appl. Math. Q. 12 (2016), no. 4, 603–619. MR 3842856, DOI 10.4310/PAMQ.2016.v12.n4.a8
- Mu-Tao Wang, Long-time existence and convergence of graphic mean curvature flow in arbitrary codimension, Invent. Math. 148 (2002), no. 3, 525–543. MR 1908059, DOI 10.1007/s002220100201
- Yuanlong Xin, Mean curvature flow with convex Gauss image, Chinese Ann. Math. Ser. B 29 (2008), no. 2, 121–134. MR 2392328, DOI 10.1007/s11401-007-0212-1
- Y. L. Xin, Translating solitons of the mean curvature flow, Calc. Var. Partial Differential Equations 54 (2015), no. 2, 1995–2016. MR 3396441, DOI 10.1007/s00526-015-0853-y
- Y. L. Xin and Ling Yang, Convex functions on Grassmannian manifolds and Lawson-Osserman problem, Adv. Math. 219 (2008), no. 4, 1298–1326. MR 2450611, DOI 10.1016/j.aim.2008.06.015
Bibliographic Information
- Li Guan
- Affiliation: Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People’s Republic of China
- Email: guanli@zju.edu.cn
- Hongwei Xu
- Affiliation: Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People’s Republic of China
- MR Author ID: 245171
- Email: xuhw@zju.edu.cn
- Entao Zhao
- Affiliation: Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027, People’s Republic of China
- MR Author ID: 884026
- ORCID: 0000-0002-6954-6664
- Email: zhaoet@zju.edu.cn
- Received by editor(s): December 8, 2021
- Received by editor(s) in revised form: March 7, 2022
- Published electronically: September 2, 2022
- Additional Notes: The research was supported by the National Natural Science Foundation of China, Grant Nos. 11531012, 12071424, 12171423.
- Communicated by: Guofang Wei
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 269-279
- MSC (2020): Primary 53E10, 53C24
- DOI: https://doi.org/10.1090/proc/16078
- MathSciNet review: 4504624
Dedicated: Dedicated to Professor Buqing Su on his 120th Anniversary