A fractal version of the Onsager’s conjecture: The $\beta -$model
HTML articles powered by AMS MathViewer
- by Luigi De Rosa and Silja Haffter;
- Proc. Amer. Math. Soc. 151 (2023), 255-267
- DOI: https://doi.org/10.1090/proc/16104
- Published electronically: September 15, 2022
- HTML | PDF | Request permission
Abstract:
Intermittency phenomena are known to be among the main reasons why Kolmogorov’s theory of fully developed Turbulence is not in accordance with several experimental results. This is why some fractal statistical models have been proposed in order to realign the theoretical physical predictions with the empirical experiments. They indicate that energy dissipation, and thus singularities, is not space filling for high Reynolds numbers. This note aims to give a precise mathematical statement on the energy conservation of such fractal models of Turbulence. We prove that for $\theta -$Hölder continuous weak solutions of the incompressible Euler equations energy conservation holds if the upper Minkowski dimension of the spatial singular set $S \subseteq \mathbb {T}^3$ (possibly also time-dependent) is small, or more precisely if $\overline {\operatorname {dim}}_{\mathcal {M}}(S)<2+3\theta$. In particular, the spatial singularities of non-conservative $\theta -$Hölder continuous weak solutions of Euler are concentrated on a set with dimension lower bound $2+3\theta$. This result can be viewed as the fractal counterpart of the celebrated Onsager conjecture and it matches both with the prediction given by the $\beta -$model introduced by Frisch, Sulem and Nelkin [J. Fluid Mech. 87 (1978), pp. 719–736] and with other mathematical results in the endpoint cases.References
- Tomas Bohr, Mogens H. Jensen, Giovanni Paladin, and Angelo Vulpiani, Dynamical systems approach to turbulence, Cambridge Nonlinear Science Series, vol. 8, Cambridge University Press, Cambridge, 1998. MR 1643112, DOI 10.1017/CBO9780511599972
- Tristan Buckmaster, Camillo De Lellis, Philip Isett, and László Székelyhidi Jr., Anomalous dissipation for $1/5$-Hölder Euler flows, Ann. of Math. (2) 182 (2015), no. 1, 127–172. MR 3374958, DOI 10.4007/annals.2015.182.1.3
- Tristan Buckmaster, Camillo De Lellis, and László Székelyhidi Jr., Dissipative Euler flows with Onsager-critical spatial regularity, Comm. Pure Appl. Math. 69 (2016), no. 9, 1613–1670. MR 3530360, DOI 10.1002/cpa.21586
- Tristan Buckmaster, Camillo de Lellis, László Székelyhidi Jr., and Vlad Vicol, Onsager’s conjecture for admissible weak solutions, Comm. Pure Appl. Math. 72 (2019), no. 2, 229–274. MR 3896021, DOI 10.1002/cpa.21781
- Tristan Buckmaster, Maria Colombo, and Vlad Vicol, Wild solutions of the Navier-Stokes equations whose singular sets in time have Hausdorff dimension strictly less than 1, arXiv:1809.00600 [math.AP] (2019).
- Tristan Buckmaster, Nader Masmoudi, Vlad Vicol, and Matthew Novack, Non-conservative $H^{\frac {1}{2}-}$ weak solutions of the incompressible 3D Euler equations, arXiv:2101.09278 [math.AP] (2021).
- Russel E. Caflisch, Isaac Klapper, and Gregory Steele, Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD, Comm. Math. Phys. 184 (1997), no. 2, 443–455. MR 1462753, DOI 10.1007/s002200050067
- A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy, Energy conservation and Onsager’s conjecture for the Euler equations, Nonlinearity 21 (2008), no. 6, 1233–1252. MR 2422377, DOI 10.1088/0951-7715/21/6/005
- Maria Colombo, Luigi De Rosa, and Luigi Forcella, Regularity results for rough solutions of the incompressible Euler equations via interpolation methods, Nonlinearity 33 (2020), no. 9, 4818–4836. MR 4135097, DOI 10.1088/1361-6544/ab8fb5
- Alexey Cheskidov and Xiaoyutao Luo, Sharp nonuniqueness for the Navier-Stokes equations, arXiv:2009.06596 [math.AP] (2020).
- A. Cheskidov and R. Shvydkoy, Euler equations and turbulence: analytical approach to intermittency, SIAM J. Math. Anal. 46 (2014), no. 1, 353–374. MR 3152734, DOI 10.1137/120876447
- Maria Colombo and Luigi De Rosa, Regularity in time of Hölder solutions of Euler and hypodissipative Navier-Stokes equations, SIAM J. Math. Anal. 52 (2020), no. 1, 221–238. MR 4051979, DOI 10.1137/19M1259900
- Peter Constantin, Weinan E, and Edriss S. Titi, Onsager’s conjecture on the energy conservation for solutions of Euler’s equation, Comm. Math. Phys. 165 (1994), no. 1, 207–209. MR 1298949, DOI 10.1007/BF02099744
- Sara Daneri and László Székelyhidi Jr., Non-uniqueness and h-principle for Hölder-continuous weak solutions of the Euler equations, Arch. Ration. Mech. Anal. 224 (2017), no. 2, 471–514. MR 3614753, DOI 10.1007/s00205-017-1081-8
- Camillo De Lellis and László Székelyhidi Jr., Dissipative continuous Euler flows, Invent. Math. 193 (2013), no. 2, 377–407. MR 3090182, DOI 10.1007/s00222-012-0429-9
- Luigi De Rosa and Silja Haffter, Dimension of the singular set of wild Hölder solutions of the incompressible Euler equations, arXiv:2102.06085 [math.AP] (2021).
- Gregory L. Eyink, Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer, Phys. D 78 (1994), no. 3-4, 222–240. MR 1302409, DOI 10.1016/0167-2789(94)90117-1
- Gregory L. Eyink, Besov spaces and the multifractal hypothesis, J. Statist. Phys. 78 (1995), no. 1-2, 353–375. Papers dedicated to the memory of Lars Onsager. MR 1317149, DOI 10.1007/BF02183353
- Gregory L. Eyink and David J. Thomson, Free decay of turbulence and breakdown of self-similarity, Phys. Fluids 12 (2000), no. 3, 477–479. MR 1743086, DOI 10.1063/1.870279
- Uriel Frisch, Turbulence, Cambridge University Press, Cambridge, 1995. The legacy of A. N. Kolmogorov. MR 1428905, DOI 10.1017/CBO9781139170666
- U. Frisch and G. Parisi, On the singularity structure of fully developed turbulence, Turbulence and Predictability of Geophysical Flows and Climate Dynamics, (North- Holland, Amsterdam) (1985), 84–87.
- U. Frisch, P. Sulem, and M. Nelkin, A simple dynamical model of intermittent fully developed turbulence, J. Fluid Mech. 87 (1978), no. 4, 719–736., DOI 10.1017/S0022112078001846
- Kartik P. Iyer, Katepalli R. Sreenivasan, and P. K. Yeung, Scaling exponents saturate in three-dimensional isotropic turbulence, Phys. Rev. Fluids 5 (2020), 054605., DOI 10.1103/PhysRevFluids.5.054605
- Philip Isett, Regularity in time along the coarse scale flow for the incompressible Euler equations, arXiv:1307.0565 (2018).
- Philip Isett, On the Endpoint Regularity in Onsager’s Conjecture, arXiv:1706.01549 (2017).
- Philip Isett, A proof of Onsager’s conjecture, Ann. of Math. (2) 188 (2018), no. 3, 871–963. MR 3866888, DOI 10.4007/annals.2018.188.3.4
- A. Kolmogoroff, The local structure of turbulence in incompressible viscous fluid for very large Reynold’s numbers, C. R. (Doklady) Acad. Sci. URSS (N.S.) 30 (1941), 301–305. MR 4146
- Pertti Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, vol. 44, Cambridge University Press, Cambridge, 1995. Fractals and rectifiability. MR 1333890, DOI 10.1017/CBO9780511623813
- Matthew Novack and Vlad Vicol, An intermittent Onsager theorem, arXiv:2203.13115 [math.AP] (2022).
- L. Onsager, Statistical hydrodynamics, Nuovo Cimento (9) 6 (1949), no. Supplemento, 2 (Convegno Internazionale di Meccanica Statistica), 279–287. MR 36116, DOI 10.1007/BF02780991
- Giovanni Paladin and Angelo Vulpiani, Anomalous scaling laws in multifractal objects, Phys. Rep. 156 (1987), no. 4, 147–225. MR 919714, DOI 10.1016/0370-1573(87)90110-4
- Vladimir Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal. 3 (1993), no. 4, 343–401. MR 1231007, DOI 10.1007/BF02921318
- A. Shnirelman, Weak solutions with decreasing energy of incompressible Euler equations, Comm. Math. Phys. 210 (2000), no. 3, 541–603. MR 1777341, DOI 10.1007/s002200050791
- Roman Shvydkoy, On the energy of inviscid singular flows, J. Math. Anal. Appl. 349 (2009), no. 2, 583–595. MR 2456214, DOI 10.1016/j.jmaa.2008.09.007
- E. Siggia, Numerical study of small-scale intermittency in three-dimensional turbulence, J. Fluid Mech. 107 (1982), 375–406., DOI 10.1017/S002211208100181X
Bibliographic Information
- Luigi De Rosa
- Affiliation: Department Mathematik Und Informatik, Universitat Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland
- MR Author ID: 1282108
- ORCID: 0000-0002-7157-5114
- Email: luigi.derosa@unibas.ch
- Silja Haffter
- Affiliation: EPFL SB, Station 8, CH-1015 Lausanne, Switzerland
- MR Author ID: 1413828
- Email: silja.haffter@epfl.ch
- Received by editor(s): December 16, 2021
- Received by editor(s) in revised form: April 4, 2022, and April 5, 2022
- Published electronically: September 15, 2022
- Additional Notes: The authors were supported by the SNF Grant 182565
- Communicated by: Catherine Sulem
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 255-267
- MSC (2020): Primary 35Q31, 35D30, 76F05, 28A80
- DOI: https://doi.org/10.1090/proc/16104
- MathSciNet review: 4504623