A reverse Thomson problem on the unit circle
HTML articles powered by AMS MathViewer
- by Tuo Leng and Yuchi Wu;
- Proc. Amer. Math. Soc. 151 (2023), 327-337
- DOI: https://doi.org/10.1090/proc/16110
- Published electronically: September 9, 2022
- HTML | PDF | Request permission
Abstract:
Let $x_1$, $x_2$, …, $x_n$ be $n$ points on the sphere $S^2$. Determining the value $\inf \sum _{1\leq k<j\leq n}|x_k-x_j|^{-1}$, is a long-standing open problem in discrete geometry, which is known as Thomson’s problem. In this paper, we propose a reverse problem on the sphere $S^{d-1}$ in $d$-dimensional Euclidean space, which is equivalent to establish the reverse Thomson inequality. In the planar case, we establish two variants of the reverse Thomson inequality.
In addition, we give a proof to the minimal logarithmic energy of $x_1$, $x_2$, …, $x_n$ and two dimensional Thomson’s problem on the unit circle for all integer $n\geq 2$.
References
- R. Alexander, On the sum of distances between $n$ points on a sphere, Acta Math. Acad. Sci. Hungar. 23 (1972), 443–448. MR 312395, DOI 10.1007/BF01896964
- Diego Armentano, Carlos Beltrán, and Michael Shub, Minimizing the discrete logarithmic energy on the sphere: the role of random polynomials, Trans. Amer. Math. Soc. 363 (2011), no. 6, 2955–2965. MR 2775794, DOI 10.1090/S0002-9947-2011-05243-8
- József Beck, Some upper bounds in the theory of irregularities of distribution, Acta Arith. 43 (1984), no. 2, 115–130. MR 736726, DOI 10.4064/aa-43-2-115-130
- Carlos Beltrán, The state of the art in Smale’s 7th problem, Foundations of computational mathematics, Budapest 2011, London Math. Soc. Lecture Note Ser., vol. 403, Cambridge Univ. Press, Cambridge, 2013, pp. 1–15. MR 3137631
- Göran Björck, Distributions of positive mass, which maximize a certain generalized energy integral, Ark. Mat. 3 (1956), 255–269. MR 78470, DOI 10.1007/BF02589412
- Johann S. Brauchart and Peter J. Grabner, Distributing many points on spheres: minimal energy and designs, J. Complexity 31 (2015), no. 3, 293–326. MR 3325677, DOI 10.1016/j.jco.2015.02.003
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1993. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1194619, DOI 10.1007/978-1-4757-2249-9
- H. S. M. Coxeter, Division of mathematics: The problem of packing a number of equal nonoverlapping circles on a sphere, Trans. New York Acad. Sci. Ser II 24 (2012), no. 3, 320–331.
- L. Fejes Tóth, On the sum of distances determined by a pointset, Acta Math. Acad. Sci. Hungar. 7 (1956), 397–401 (English, with Russian summary). MR 107212, DOI 10.1007/BF02020534
- L. Fejes Tóth, Regular figures, The Macmillan Company, New York, 1964. MR 165423
- L. Glasser and A. G. Every, Energies and spacings of point charges on a sphere, J. Phys. A Math. Gen. 25 (1992), no. 9, 2473–2482.
- Z. Kadelburg, D. Dukić, M. Lukić, and I. Matić, Inequalities of Karamata, Schur and Muirhead, and some applications., Teach. Math. 8 (2005), no. 1, 31–45.
- A. B. J. Kuijlaars and E. B. Saff, Asymptotics for minimal discrete energy on the sphere, Trans. Amer. Math. Soc. 350 (1998), no. 2, 523–538. MR 1458327, DOI 10.1090/S0002-9947-98-02119-9
- Theodor William Melnyk, Osvald Knop, and William Robert Smith, Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited, Canad. J. Chem. 55 (1977), no. 10, 1745–1761 (English, with French summary). MR 444497, DOI 10.1139/v77-246
- R. Nerattini, J. S. Brauchart, and M. K.-H. Kiessling, Optimal $N$-point configurations on the sphere: “magic” numbers and Smale’s 7th problem, J. Stat. Phys. 157 (2014), no. 6, 1138–1206. MR 3277763, DOI 10.1007/s10955-014-1107-7
- M. Shub and S. Smale, Complexity of Bezout’s theorem. II. Volumes and probabilities, Computational algebraic geometry (Nice, 1992) Progr. Math., vol. 109, Birkhäuser Boston, Boston, MA, 1993, pp. 267–285. MR 1230872, DOI 10.1007/978-1-4612-2752-6_{1}9
- Michael Shub and Steve Smale, Complexity of Bézout’s theorem. I. Geometric aspects, J. Amer. Math. Soc. 6 (1993), no. 2, 459–501. MR 1175980, DOI 10.1090/S0894-0347-1993-1175980-4
- Michael Shub and Steve Smale, Complexity of Bezout’s theorem. III. Condition number and packing, J. Complexity 9 (1993), no. 1, 4–14. Festschrift for Joseph F. Traub, Part I. MR 1213484, DOI 10.1006/jcom.1993.1002
- Steve Smale, Mathematical problems for the next century, Math. Intelligencer 20 (1998), no. 2, 7–15. MR 1631413, DOI 10.1007/BF03025291
- R. E. Smalley, Great balls of carbon: The story of buckminsterfullerene, The Sciences 31 (1991), no. 2, 22–28.
- Kenneth B. Stolarsky, Sums of distances between points on a sphere, Proc. Amer. Math. Soc. 35 (1972), 547–549. MR 303418, DOI 10.1090/S0002-9939-1972-0303418-3
- Kenneth B. Stolarsky, Sums of distances between points on a sphere. II, Proc. Amer. Math. Soc. 41 (1973), 575–582. MR 333995, DOI 10.1090/S0002-9939-1973-0333995-9
- B. L. van der Waerden, Punkte auf der Kugel. Drei Zusätze, Math. Ann. 125 (1952), 213–222 (German). MR 50912, DOI 10.1007/BF01343118
- Jeffrey B. Weinrach, Kay L. Carter, Dennis W. Bennett, and H. Keith Mcdowell, Point charge approximations to a spherical charge distribution: A random walk to high symmetry, J. Chem. Educ. 67 (1990), no. 12, 995.
- L. L. Whyte, Unique arrangements of points on a sphere, Amer. Math. Monthly 59 (1952), 606–611. MR 50303, DOI 10.2307/2306764
- B. L. Zhang, C. Z. Wang, K. M. Ho, C. H. Xu, and C. T. Chan, The geometry of small fullerene cages: C20 to c70, J. Chem. Phys. 97 (1992), no. 7, 5007.
Bibliographic Information
- Tuo Leng
- Affiliation: School of Computer Engineering and Science, Shanghai University, Shanghai 200444, People’s Republic of China
- ORCID: 0000-0002-2921-3291
- Email: tleng@shu.edu.cn
- Yuchi Wu
- Affiliation: School of Mathematics science, East China Normal University, Shanghai 200241, China; and Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, Shanghai 200241, People’s Republic of China
- ORCID: 0000-0003-1076-2554
- Email: wuyuchi1990@126.com
- Received by editor(s): February 11, 2022
- Received by editor(s) in revised form: March 31, 2022, and April 11, 2022
- Published electronically: September 9, 2022
- Additional Notes: Research of the first named author was supported by NSFC 12071282. Research of the second author was supported by Project funded by China Postdoctoral Science Foundation 2019TQ0097 and Science and Technology Commission of Shanghai Municipality 18dz2271000.
- Communicated by: Gaoyong Zhang
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 327-337
- MSC (2020): Primary 52A40, 31C20, 41A60
- DOI: https://doi.org/10.1090/proc/16110
- MathSciNet review: 4504628