Flows with time-reversal symmetric limit sets on surfaces
HTML articles powered by AMS MathViewer
- by Tomoo Yokoyama;
- Proc. Amer. Math. Soc. 151 (2023), 161-176
- DOI: https://doi.org/10.1090/proc/16113
- Published electronically: August 12, 2022
- HTML | PDF | Request permission
Abstract:
The Long-time behavior of orbits is one of the most fundamental properties in dynamical systems. Poincaré studied the Poisson stability, which satisfies a time-reversal symmetric condition, to capture the property of whether points return arbitrarily near the initial positions after a sufficiently long time. Birkhoff introduced and studied the concept of non-wandering points, which is one of the time-reversal symmetric conditions. Moreover, minimality and pointwise periodicity satisfy the time-reversal symmetric condition for limit sets. This paper characterizes flows with the time-reversal symmetric condition for limit sets, which refine the characterization of irrational or Denjoy flows by Athanassopoulos. Using the description, we construct flows on a sphere with Lakes of Wada attractors and with an arbitrarily large number of complementary domains, which are flow versions of such examples of spherical homeomorphisms constructed by Boroński, Činč, and Liu.References
- S. Kh. Aranson, G. R. Belitsky, and E. V. Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Translations of Mathematical Monographs, vol. 153, American Mathematical Society, Providence, RI, 1996. Translated from the Russian manuscript by H. H. McFaden. MR 1400885, DOI 10.1090/mmono/153
- Konstantin Athanassopoulos, A characterization of Denjoy flows, Bull. London Math. Soc. 24 (1992), no. 1, 83–86. MR 1139063, DOI 10.1112/blms/24.1.83
- George D. Birkhoff, Dynamical systems, American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, RI, 1966. With an addendum by Jurgen Moser. MR 209095
- Jan P. Boroński, Jernej Činč, and Xiao-Chuan Liu, Prime ends dynamics in parametrised families of rotational attractors, J. Lond. Math. Soc. (2) 102 (2020), no. 2, 557–579. MR 4171426, DOI 10.1112/jlms.12328
- L. E. J. Brouwer, Zur Analysis Situs, Math. Ann. 68 (1910), no. 3, 422–434 (German). MR 1511570, DOI 10.1007/BF01475781
- T. M. Cherry, Topological Properties of the Solutions of Ordinary Differential Equations, Amer. J. Math. 59 (1937), no. 4, 957–982. MR 1507295, DOI 10.2307/2371361
- Yves Coudene, Pictures of hyperbolic dynamical systems, Notices Amer. Math. Soc. 53 (2006), no. 1, 8–13. MR 2189945
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 208–314 (French). MR 1504797, DOI 10.24033/bsmf.1008
- Hans Freudenthal, Über die Enden topologischer Räume und Gruppen, Math. Z. 33 (1931), no. 1, 692–713 (German). MR 1545233, DOI 10.1007/BF01174375
- Carlos Gutiérrez, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory Dynam. Systems 6 (1986), no. 1, 17–44. MR 837974, DOI 10.1017/S0143385700003278
- Gilbert Hector and Ulrich Hirsch, Introduction to the geometry of foliations. Part A, Aspects of Mathematics, vol. 1, Friedr. Vieweg & Sohn, Braunschweig, 1981. Foliations on compact surfaces, fundamentals for arbitrary codimension, and holonomy. MR 639738, DOI 10.1007/978-3-322-98482-1
- John H. Hubbard and Ralph W. Oberste-Vorth, Hénon mappings in the complex domain. II. Projective and inductive limits of polynomials, Real and complex dynamical systems (Hillerød, 1993) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 464, Kluwer Acad. Publ., Dordrecht, 1995, pp. 89–132. MR 1351520
- John L. Kelley, General topology, Graduate Texts in Mathematics, No. 27, Springer-Verlag, New York-Berlin, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]. MR 370454
- Judy Kennedy and James A. Yorke, Basins of Wada, Phys. D 51 (1991), no. 1-3, 213–225. Nonlinear science: the next decade (Los Alamos, NM, 1990). MR 1128813, DOI 10.1016/0167-2789(91)90234-Z
- Tian Ma and Shouhong Wang, Geometric theory of incompressible flows with applications to fluid dynamics, Mathematical Surveys and Monographs, vol. 119, American Mathematical Society, Providence, RI, 2005. MR 2165493, DOI 10.1090/surv/119
- D. Martí-Pete, L. Rempe, and J. Waterman, Eremenko’s conjecture, wandering lakes of Wada, and Maverick points, Preprint, arXiv:2108.10256, 2021.
- R. V. Plykin, Sources and sinks of $\textrm {A}$-diffeomorphisms of surfaces, Mat. Sb. (N.S.) 94(136) (1974), 243–264, 336 (Russian). MR 356137
- H. Poincaré, Sur le problème des trois corps et les équations de la dynamique, Acta Math. 13 (1890), no. 1–2, 1–270
- H. Poincaré, Les méthodes nouvelles de la mécanique céleste. Tome III, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Librairie Scientifique et Technique Albert Blanchard, Paris, 1987 (French). Invariant intégraux. Solutions périodiques du deuxième genre. Solutions doublement asymptotiques. [Integral invariants. Periodic solutions of the second kind. Doubly asymptotic solutions]; Reprint of the 1899 original; Bibliothèque Scientifique Albert Blanchard. [Albert Blanchard Scientific Library]. MR 926908
- Frank Raymond, The end point compactification of manifolds, Pacific J. Math. 10 (1960), 947–963. MR 120637, DOI 10.2140/pjm.1960.10.947
- Ian Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259–269. MR 143186, DOI 10.1090/S0002-9947-1963-0143186-0
- T. Yokoyama, Decompositions of surface flows, Preprint, arXiv:1703.05501, 2017.
- T. Yokoyama, A Poincaré-Bendixson theorem for flows with arbitrarily many singular points, Preprint, arXiv:2109.12478, 2021.
Bibliographic Information
- Tomoo Yokoyama
- Affiliation: Applied Mathematics and Physics Division, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan
- MR Author ID: 838569
- Email: tomoo@gifu-u.ac.jp
- Received by editor(s): February 12, 2022
- Received by editor(s) in revised form: March 10, 2022, and March 11, 2022
- Published electronically: August 12, 2022
- Additional Notes: The author was partially supported by JSPS Grant Number 20K03583
- Communicated by: Wenxian Shen
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 161-176
- MSC (2020): Primary 37E35; Secondary 70H33, 37B45
- DOI: https://doi.org/10.1090/proc/16113
- MathSciNet review: 4504616