On the isomorphism class of $q$-Gaussian C$^\ast$-algebras for infinite variables
HTML articles powered by AMS MathViewer
- by Matthijs Borst, Martijn Caspers, Mario Klisse and Mateusz Wasilewski;
- Proc. Amer. Math. Soc. 151 (2023), 737-744
- DOI: https://doi.org/10.1090/proc/16165
- Published electronically: November 22, 2022
- HTML | PDF | Request permission
Abstract:
For a real Hilbert space $H_{\mathbb {R}}$ and $-1 < q < 1$ Bozejko and Speicher introduced the C$^\ast$-algebra $A_q(H_{\mathbb {R}})$ and von Neumann algebra $M_q(H_{\mathbb {R}})$ of $q$-Gaussian variables. We prove that if $\dim (H_{\mathbb {R}}) = \infty$ and $-1 < q < 1, q \not = 0$ then $M_q(H_{\mathbb {R}})$ does not have the Akemann-Ostrand property with respect to $A_q(H_{\mathbb {R}})$. It follows that $A_q(H_{\mathbb {R}})$ is not isomorphic to $A_0(H_{\mathbb {R}})$. This gives an answer to the C$^\ast$-algebraic part of Question 1.1 and Question 1.2 in raised by Nelson and Zeng [Int. Math. Res. Not. IMRN 17 (2018), pp. 5486–5535].References
- Marek Bożejko and Roland Speicher, An example of a generalized Brownian motion, Comm. Math. Phys. 137 (1991), no. 3, 519–531. MR 1105428, DOI 10.1007/BF02100275
- Marek Bożejko, Burkhard Kümmerer, and Roland Speicher, $q$-Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys. 185 (1997), no. 1, 129–154. MR 1463036, DOI 10.1007/s002200050084
- Marek Bożejko, Ultracontractivity and strong Sobolev inequality for $q$-Ornstein-Uhlenbeck semigroup $(-1<q<1)$, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), no. 2, 203–220. MR 1811255, DOI 10.1142/S0219025799000114
- Nathanial P. Brown and Narutaka Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008. MR 2391387, DOI 10.1090/gsm/088
- Martijn Caspers, Mario Klisse, and Nadia S. Larsen, Graph product Khintchine inequalities and Hecke $\rm C^\ast$-algebras: Haagerup inequalities, (non)simplicity, nuclearity and exactness, J. Funct. Anal. 280 (2021), no. 1, Paper No. 108795, 41. MR 4156133, DOI 10.1016/j.jfa.2020.108795
- Martijn Caspers, Yusuke Isono, and Mateusz Wasilewski, $L_2$-cohomology, derivations, and quantum Markov semi-groups on $q$-Gaussian algebras, Int. Math. Res. Not. IMRN 9 (2021), 6405–6441. MR 4251282, DOI 10.1093/imrn/rnaa044
- A. Connes, Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. MR 454659, DOI 10.2307/1971057
- Yoann Dabrowski, A free stochastic partial differential equation, Ann. Inst. Henri Poincaré Probab. Stat. 50 (2014), no. 4, 1404–1455. MR 3270000, DOI 10.1214/13-AIHP548
- Edward G. Effros and Mihai Popa, Feynman diagrams and Wick products associated with $q$-Fock space, Proc. Natl. Acad. Sci. USA 100 (2003), no. 15, 8629–8633. MR 1994546, DOI 10.1073/pnas.1531460100
- A. Guionnet and D. Shlyakhtenko, Free monotone transport, Invent. Math. 197 (2014), no. 3, 613–661. MR 3251831, DOI 10.1007/s00222-013-0493-9
- C. Houdayer, Sur la classification de certaines algèbres de von Neumann, Ph.D. Thesis, 2007.
- A. Kuzmin, CCR and CAR algebras are connected via a path of Cuntz-Toeplitz algebras, Preprint, arXiv:2203.10058, 2022.
- Brent Nelson and Qiang Zeng, Free monotone transport for infinite variables, Int. Math. Res. Not. IMRN 17 (2018), 5486–5535. MR 3862124, DOI 10.1093/imrn/rnx060
- Alexandre Nou, Non injectivity of the $q$-deformed von Neumann algebra, Math. Ann. 330 (2004), no. 1, 17–38. MR 2091676, DOI 10.1007/s00208-004-0523-4
- Éric Ricard, Factoriality of $q$-Gaussian von Neumann algebras, Comm. Math. Phys. 257 (2005), no. 3, 659–665. MR 2164947, DOI 10.1007/s00220-004-1266-5
- Dimitri Shlyakhtenko, Some estimates for non-microstates free entropy dimension with applications to $q$-semicircular families, Int. Math. Res. Not. 51 (2004), 2757–2772. MR 2130608, DOI 10.1155/S1073792804140476
- M. Takesaki, Theory of operator algebras. I, Encyclopaedia of Mathematical Sciences, vol. 124, Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition; Operator Algebras and Non-commutative Geometry, 5. MR 1873025
Bibliographic Information
- Matthijs Borst
- Affiliation: TU Delft, EWI/DIAM, P.O. Box 5031, 2600 Georgia Delft, The Netherlands
- MR Author ID: 1440742
- ORCID: 0000-0003-4550-5099
- Email: m.j.borst@tudelft.nl
- Martijn Caspers
- Affiliation: TU Delft, EWI/DIAM, P.O. Box 5031, 2600 Georgia Delft, The Netherlands
- MR Author ID: 880229
- Email: m.p.t.caspers@tudelft.nl
- Mario Klisse
- Affiliation: TU Delft, EWI/DIAM, P.O. Box 5031, 2600 Georgia Delft, The Netherlands
- MR Author ID: 1402817
- ORCID: 0000-0003-0246-619X
- Email: m.klisse@tudelft.nl
- Mateusz Wasilewski
- Affiliation: Mateusz Wasilewski, IMPAN, Śniadeckich 8, 00-656 Warsaw, Poland
- MR Author ID: 1146862
- ORCID: 0000-0002-3952-777X
- Email: mwasilewski@impan.pl
- Received by editor(s): February 28, 2022
- Received by editor(s) in revised form: May 13, 2022
- Published electronically: November 22, 2022
- Additional Notes: The second author was supported by the NWO Vidi grant VI.Vidi.192.018 ‘Non-commutative harmonic analysis and rigidity of operator algebras’.
The third author was supported by the NWO project 613.009.125 ‘The structure of Hecke-von Neumann algebras’.
The fourth author was supported by the European Research Council Starting Grant 677120 INDEX - Communicated by: Adrian Ioana
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 737-744
- MSC (2020): Primary 46L35, 46L06
- DOI: https://doi.org/10.1090/proc/16165
- MathSciNet review: 4520022