Combinatorial description of jumps in spectral networks defined by quadratic differentials
HTML articles powered by AMS MathViewer
- by Anastasia Frolova and Alexander Vasil’ev;
- Proc. Amer. Math. Soc. 151 (2023), 1349-1362
- DOI: https://doi.org/10.1090/proc/13455
- Published electronically: December 21, 2022
- HTML | PDF | Request permission
Abstract:
We describe a graph parametrization of rational quadratic differentials with presence of a simple pole, whose critical trajectories form a network depending on parameters focusing on the network topological jumps. Obtained bifurcation diagrams are associated with the Stasheff polytopes.References
- Sergio Cecotti and Cumrun Vafa, On classification of $N=2$ supersymmetric theories, Comm. Math. Phys. 158 (1993), no. 3, 569–644. MR 1255428, DOI 10.1007/BF02096804
- Sergio Cecotti and Cumrun Vafa, Classification of complete $\scr N=2$ supersymmetric theories in 4 dimensions, Surveys in differential geometry. Geometry and topology, Surv. Differ. Geom., vol. 18, Int. Press, Somerville, MA, 2013, pp. 19–101. MR 3087917, DOI 10.4310/SDG.2013.v18.n1.a2
- Sergio Cecotti, Supersymmetric field theories, Cambridge University Press, Cambridge, 2015. Geometric structures and dualities. MR 3330186, DOI 10.1017/CBO9781107284203
- Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013), 239–403. MR 3003931, DOI 10.1016/j.aim.2012.09.027
- Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke, Spectral networks, Ann. Henri Poincaré 14 (2013), no. 7, 1643–1731. MR 3115984, DOI 10.1007/s00023-013-0239-7
- Yu. Baryshnikov, Bifurcation diagrams of quadratic differentials, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 1, 71–76 (English, with English and French summaries). MR 1461400, DOI 10.1016/S0764-4442(97)83936-5
- Yuliy Baryshnikov, On Stokes sets, New developments in singularity theory (Cambridge, 2000) NATO Sci. Ser. II Math. Phys. Chem., vol. 21, Kluwer Acad. Publ., Dordrecht, 2001, pp. 65–86. MR 1849304
- A. B. Bogatyrëv, A combinatorial description of a moduli space of curves and of extremal polynomials, Mat. Sb. 194 (2003), no. 10, 27–48 (Russian, with Russian summary); English transl., Sb. Math. 194 (2003), no. 9-10, 1451–1473. MR 2037514, DOI 10.1070/SM2003v194n10ABEH000772
- J. W. Bruce and D. B. O’Shea, On binary differential equations and minimal surfaces, preprint, Liverpool, 1997.
- A. A. Gonchar and E. A. Rakhmanov, Equilibrium distributions and the rate of rational approximation of analytic functions, Mat. Sb. (N.S.) 134(176) (1987), no. 3, 306–352, 447 (Russian); English transl., Math. USSR-Sb. 62 (1989), no. 2, 305–348. MR 922628, DOI 10.1070/SM1989v062n02ABEH003242
- James A. Jenkins, Univalent functions and conformal mapping, Reihe: Moderne Funktionentheorie, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 18. MR 96806
- Dominic Joyce and Yinan Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217 (2012), no. 1020, iv+199. MR 2951762, DOI 10.1090/S0065-9266-2011-00630-1
- Maxim Kontsevich and Yan Soibelman, Motivic Donaldson-Thomas invariants: summary of results, Mirror symmetry and tropical geometry, Contemp. Math., vol. 527, Amer. Math. Soc., Providence, RI, 2010, pp. 55–89. MR 2681792, DOI 10.1090/conm/527/10400
- V. P. Kostov and S. K. Lando, Versal deformations of powers of volume forms, Computational algebraic geometry (Nice, 1992) Progr. Math., vol. 109, Birkhäuser Boston, Boston, MA, 1993, pp. 143–162. MR 1230863, DOI 10.1007/978-1-4612-2752-6_{1}0
- Arno B. J. Kuijlaars and Guilherme L. F. Silva, S-curves in polynomial external fields, J. Approx. Theory 191 (2015), 1–37. MR 3306308, DOI 10.1016/j.jat.2014.04.002
- A. Martínez-Finkelshtein and E. A. Rakhmanov, Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials, Comm. Math. Phys. 302 (2011), no. 1, 53–111. MR 2770010, DOI 10.1007/s00220-010-1177-6
- M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet, Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters, J. Math. Anal. Appl. 416 (2014), no. 1, 52–80. MR 3182748, DOI 10.1016/j.jmaa.2014.02.040
- Boris Shapiro, Kouichi Takemura, and Miloš Tater, On spectral polynomials of the Heun equation. II, Comm. Math. Phys. 311 (2012), no. 2, 277–300. MR 2902190, DOI 10.1007/s00220-012-1466-3
- Alexander Yu. Solynin, Quadratic differentials and weighted graphs on compact surfaces, Analysis and mathematical physics, Trends Math., Birkhäuser, Basel, 2009, pp. 473–505. MR 2724628, DOI 10.1007/978-3-7643-9906-1_{2}5
- Herbert Stahl, Extremal domains associated with an analytic function. I, II, Complex Variables Theory Appl. 4 (1985), no. 4, 311–324, 325–338. MR 858916, DOI 10.1080/17476938508814117
- James Dillon Stasheff, Homotopy associativity of $H$-spaces. I, II, Trans. Amer. Math. Soc. 108 (1963), 293–312. 108 (1963), 275-292; ibid. MR 158400, DOI 10.1090/S0002-9947-1963-0158400-5
- Kurt Strebel, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 5, Springer-Verlag, Berlin, 1984. MR 743423, DOI 10.1007/978-3-662-02414-0
- Alexander Vasil′ev, Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Mathematics, vol. 1788, Springer-Verlag, Berlin, 2002. MR 1929066, DOI 10.1007/b83857
- Edward Witten, Solutions of four-dimensional field theories via $M$-theory, Nuclear Phys. B 500 (1997), no. 1-3, 3–42. MR 1471647, DOI 10.1016/S0550-3213(97)00416-1
Bibliographic Information
- Anastasia Frolova
- Affiliation: Department of Mathematics, University of Bergen, P.O. Box 7800, Bergen N-5020, Norway
- MR Author ID: 1064431
- Alexander Vasil’ev
- Affiliation: Department of Mathematics, University of Bergen, P.O. Box 7800, Bergen N-5020, Norway
- MR Author ID: 225056
- Received by editor(s): September 14, 2015
- Received by editor(s) in revised form: June 8, 2016, and August 24, 2016
- Published electronically: December 21, 2022
- Additional Notes: The authors were supported by the grants of the Norwegian Research Council #239033/F20, #213440/BG; and EU FP7 IRSES program STREVCOMS, grant no. PIRSES-GA-2013-612669.
The author Alexander Vasil’ev passed away on October 19, 2016, after the paper was accepted before the publication process - Communicated by: Jeremy Tyson
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1349-1362
- MSC (2020): Primary 58K20; Secondary 30F30, 52B11, 58K15, 81T40, 81T60
- DOI: https://doi.org/10.1090/proc/13455
- MathSciNet review: 4531660