A remark on the quaternionic Monge-Ampère equation on foliated manifolds
HTML articles powered by AMS MathViewer
- by Giovanni Gentili and Luigi Vezzoni;
- Proc. Amer. Math. Soc. 151 (2023), 1263-1275
- DOI: https://doi.org/10.1090/proc/16121
- Published electronically: December 21, 2022
- HTML | PDF | Request permission
Abstract:
Pursuing the approach of Gentili and Vezzoni [Math. Res. Not. IMRN 12 (2022), pp. 9499–9528] we study the quaternionic Monge-Ampère equation on HKT (hyperkähler with torsion) manifolds admitting an HKT foliation having corank $4$. We show that in this setting the quaternionic Monge-Ampère equation has always a unique solution for every basic datum. This approach includes the study of the equation on $\operatorname {SU}(3)$.References
- Semyon Alesker, Solvability of the quaternionic Monge-Ampère equation on compact manifolds with a flat hyperKähler metric, Adv. Math. 241 (2013), 192–219. MR 3053710, DOI 10.1016/j.aim.2013.03.021
- Semyon Alesker and Egor Shelukhin, A uniform estimate for general quaternionic Calabi problem (with an appendix by Daniel Barlet), Adv. Math. 316 (2017), 1–52. MR 3672901, DOI 10.1016/j.aim.2017.05.023
- Semyon Alesker and Misha Verbitsky, Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry, J. Geom. Anal. 16 (2006), no. 3, 375–399. MR 2250051, DOI 10.1007/BF02922058
- S. Alesker and M. Verbitsky, Quaternionic Monge-Ampère equation and Calabi problem for HKT-manifolds, Israel J. Math. 176 (2010), 109–138. MR 2653188, DOI 10.1007/s11856-010-0022-0
- Bertrand Banos and Andrew Swann, Potentials for hyper-Kähler metrics with torsion, Classical Quantum Gravity 21 (2004), no. 13, 3127–3135. MR 2072130, DOI 10.1088/0264-9381/21/13/004
- Lucio Bedulli, Giovanni Gentili, and Luigi Vezzoni, A parabolic approach to the Calabi-Yau problem in HKT geometry, Math. Z. 302 (2022), no. 2, 917–933. MR 4480215, DOI 10.1007/s00209-022-03072-x
- Lucio Bedulli, Anna Gori, and Fabio Podestà, Homogeneous hyper-complex structures and the Joyce’s construction, Differential Geom. Appl. 29 (2011), no. 4, 547–554. MR 2811664, DOI 10.1016/j.difgeo.2011.04.033
- Zbigniew Błocki, On uniform estimate in Calabi-Yau theorem, Sci. China Ser. A 48 (2005), no. suppl., 244–247. MR 2156505, DOI 10.1007/BF02884710
- G. Dimitrov and V. Tsanov, Homogeneous hypercomplex structures I—the compact Lie groups, Transform. Groups 21 (2016), no. 3, 725–762. MR 3531746, DOI 10.1007/s00031-016-9367-8
- S. Dinew and M. Sroka, HKT from HK metrics, arXiv:2105.09344, 2021.
- Anna Fino and Gueo Grantcharov, Properties of manifolds with skew-symmetric torsion and special holonomy, Adv. Math. 189 (2004), no. 2, 439–450. MR 2101226, DOI 10.1016/j.aim.2003.10.009
- Giovanni Gentili and Luigi Vezzoni, The quaternionic Calabi conjecture on abelian hypercomplex nilmanifolds viewed as tori fibrations, Int. Math. Res. Not. IMRN 12 (2022), 9499–9528. MR 4436211, DOI 10.1093/imrn/rnab004
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Gueo Grantcharov, Mehdi Lejmi, and Misha Verbitsky, Existence of HKT metrics on hypercomplex manifolds of real dimension 8, Adv. Math. 320 (2017), 1135–1157. MR 3709131, DOI 10.1016/j.aim.2017.09.020
- Gueo Grantcharov and Yat Sun Poon, Geometry of hyper-Kähler connections with torsion, Comm. Math. Phys. 213 (2000), no. 1, 19–37. MR 1782143, DOI 10.1007/s002200000231
- P. S. Howe and G. Papadopoulos, Twistor spaces for hyper-Kähler manifolds with torsion, Phys. Lett. B 379 (1996), no. 1-4, 80–86. MR 1396267, DOI 10.1016/0370-2693(96)00393-0
- Dominic Joyce, Compact hypercomplex and quaternionic manifolds, J. Differential Geom. 35 (1992), no. 3, 743–761. MR 1163458, DOI 10.4310/jdg/1214448266
- Stefan Ivanov and Alexander Petkov, HKT manifolds with holonomy $\textrm {SL}(n,H)$, Int. Math. Res. Not. IMRN 16 (2012), 3779–3799. MR 2959027, DOI 10.1093/imrn/rnr160
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 244627
- Marcin Sroka, The $C^0$ estimate for the quaternionic Calabi conjecture, Adv. Math. 370 (2020), 107237, 15. MR 4103776, DOI 10.1016/j.aim.2020.107237
- Andrew Swann, Twisting Hermitian and hypercomplex geometries, Duke Math. J. 155 (2010), no. 2, 403–431. MR 2736170, DOI 10.1215/00127094-2010-059
- Gábor Székelyhidi, Fully non-linear elliptic equations on compact Hermitian manifolds, J. Differential Geom. 109 (2018), no. 2, 337–378. MR 3807322, DOI 10.4310/jdg/1527040875
- Misha Verbitsky, HyperKähler manifolds with torsion, supersymmetry and Hodge theory, Asian J. Math. 6 (2002), no. 4, 679–712. MR 1958088, DOI 10.4310/AJM.2002.v6.n4.a5
- Misha Verbitsky, Hypercomplex manifolds with trivial canonical bundle and their holonomy, Moscow Seminar on Mathematical Physics. II, Amer. Math. Soc. Transl. Ser. 2, vol. 221, Amer. Math. Soc., Providence, RI, 2007, pp. 203–211. MR 2384800, DOI 10.1090/trans2/221/12
- Misha Verbitsky, Balanced HKT metrics and strong HKT metrics on hypercomplex manifolds, Math. Res. Lett. 16 (2009), no. 4, 735–752. MR 2525037, DOI 10.4310/MRL.2009.v16.n4.a14
Bibliographic Information
- Giovanni Gentili
- Affiliation: Dipartimento di Matematica G. Peano, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
- ORCID: 0000-0001-7638-4205
- Email: giovanni.gentili@unito.it
- Luigi Vezzoni
- Affiliation: Dipartimento di Matematica G. Peano, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
- MR Author ID: 788750
- ORCID: 0000-0001-8406-5079
- Email: luigi.vezzoni@unito.it
- Received by editor(s): October 18, 2021
- Received by editor(s) in revised form: April 21, 2022
- Published electronically: December 21, 2022
- Additional Notes: This work was supported by GNSAGA of INdAM
- Communicated by: Jiaping Wang
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1263-1275
- MSC (2020): Primary 53C26, 32W20; Secondary 53C12
- DOI: https://doi.org/10.1090/proc/16121
- MathSciNet review: 4531653