A Sierpinski carpet like fractal without standard self-similar energy
HTML articles powered by AMS MathViewer
- by Shiping Cao and Hua Qiu;
- Proc. Amer. Math. Soc. 151 (2023), 1087-1102
- DOI: https://doi.org/10.1090/proc/16146
- Published electronically: December 21, 2022
- HTML | PDF | Request permission
Abstract:
We construct a Sierpinski carpet like fractal, on which a diffusion with sub-Gaussian heat kernel estimate does not exist, in contrast to previous researches on the existence of such diffusions, on the generalized Sierpinski carpets and recently introduced unconstrained Sierpinski carpets.References
- Martin T. Barlow and Richard F. Bass, The construction of Brownian motion on the Sierpiński carpet, Ann. Inst. H. Poincaré Probab. Statist. 25 (1989), no. 3, 225–257 (English, with French summary). MR 1023950
- M. T. Barlow and R. F. Bass, On the resistance of the Sierpiński carpet, Proc. Roy. Soc. London Ser. A 431 (1990), no. 1882, 345–360. MR 1080496, DOI 10.1098/rspa.1990.0135
- Martin T. Barlow and Richard F. Bass, Transition densities for Brownian motion on the Sierpiński carpet, Probab. Theory Related Fields 91 (1992), no. 3-4, 307–330. MR 1151799, DOI 10.1007/BF01192060
- Martin T. Barlow and Richard F. Bass, Brownian motion and harmonic analysis on Sierpinski carpets, Canad. J. Math. 51 (1999), no. 4, 673–744. MR 1701339, DOI 10.4153/CJM-1999-031-4
- Martin T. Barlow, Richard F. Bass, Takashi Kumagai, and Alexander Teplyaev, Uniqueness of Brownian motion on Sierpiński carpets, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 655–701. MR 2639315, DOI 10.4171/jems/211
- Martin T. Barlow, Thierry Coulhon, and Takashi Kumagai, Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs, Comm. Pure Appl. Math. 58 (2005), no. 12, 1642–1677. MR 2177164, DOI 10.1002/cpa.20091
- S. Cao and H. Qiu, Dirichlet forms on unconstrained Sierpinski carpets, arXiv:2104.01529, 2021.
- Zhen-Qing Chen and Masatoshi Fukushima, Symmetric Markov processes, time change, and boundary theory, London Mathematical Society Monographs Series, vol. 35, Princeton University Press, Princeton, NJ, 2012. MR 2849840
- Pat J. Fitzsimmons, Ben M. Hambly, and Takashi Kumagai, Transition density estimates for Brownian motion on affine nested fractals, Comm. Math. Phys. 165 (1994), no. 3, 595–620. MR 1301625, DOI 10.1007/BF02099425
- Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, Second revised and extended edition, De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. MR 2778606
- Alexander Grigor’yan, Analysis on fractal spaces and heat kernels, Dirichlet forms and related topics, Springer Proc. Math. Stat., vol. 394, Springer, Singapore, [2022] ©2022, pp. 143–159. MR 4508844, DOI 10.1007/978-981-19-4672-1_{9}
- Alexander Grigor’yan, Jiaxin Hu, and Ka-Sing Lau, Heat kernels on metric measure spaces and an application to semilinear elliptic equations, Trans. Amer. Math. Soc. 355 (2003), no. 5, 2065–2095. MR 1953538, DOI 10.1090/S0002-9947-03-03211-2
- Masanori Hino, On singularity of energy measures on self-similar sets, Probab. Theory Related Fields 132 (2005), no. 2, 265–290. MR 2199293, DOI 10.1007/s00440-004-0396-1
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- Jun Kigami, Harmonic calculus on p.c.f. self-similar sets, Trans. Amer. Math. Soc. 335 (1993), no. 2, 721–755. MR 1076617, DOI 10.1090/S0002-9947-1993-1076617-1
- Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR 1840042, DOI 10.1017/CBO9780511470943
- Jun Kigami, Resistance forms, quasisymmetric maps and heat kernel estimates, Mem. Amer. Math. Soc. 216 (2012), no. 1015, vi+132. MR 2919892, DOI 10.1090/S0065-9266-2011-00632-5
- Shigeo Kusuoka and Zhou Xian Yin, Dirichlet forms on fractals: Poincaré constant and resistance, Probab. Theory Related Fields 93 (1992), no. 2, 169–196. MR 1176724, DOI 10.1007/BF01195228
- C. Sabot, Existence and uniqueness of diffusions on finitely ramified self-similar fractals, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 5, 605–673 (English, with English and French summaries). MR 1474807, DOI 10.1016/S0012-9593(97)89934-X
Bibliographic Information
- Shiping Cao
- Affiliation: Department of Mathematics, Cornell University, Ithaca, New York 14853
- MR Author ID: 1228708
- ORCID: 0000-0002-5711-6632
- Email: sc2873@cornell.edu
- Hua Qiu
- Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
- ORCID: 0000-0001-5837-0643
- Email: huaqiu@nju.edu.cn
- Received by editor(s): September 27, 2021
- Received by editor(s) in revised form: April 7, 2022, May 4, 2022, May 11, 2022, and May 18, 2022
- Published electronically: December 21, 2022
- Additional Notes: The research of the second author was supported by the National Natural Science Foundation of China, grant 12071213, and the Natural Science Foundation of Jiangsu Province in China, grant BK20211142
- Communicated by: Zhen-Qing Chen
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1087-1102
- MSC (2020): Primary 28A80, 31E05
- DOI: https://doi.org/10.1090/proc/16146
- MathSciNet review: 4531640