Torsion for CM elliptic curves defined over number fields of degree $2p$
HTML articles powered by AMS MathViewer
- by Abbey Bourdon and Holly Paige Chaos;
- Proc. Amer. Math. Soc. 151 (2023), 1001-1015
- DOI: https://doi.org/10.1090/proc/16170
- Published electronically: December 15, 2022
- HTML | PDF
Abstract:
For a prime number $p$, we characterize the groups that may arise as torsion subgroups of an elliptic curve with complex multiplication defined over a number field of degree $2p$. In particular, our work shows that a classification in the strongest sense is tied to determining whether there exist infinitely many Sophie Germain primes.References
- Abbey Bourdon and Pete L. Clark, Torsion points and Galois representations on CM elliptic curves, Pacific J. Math. 305 (2020), no. 1, 43â88. MR 4077686, DOI 10.2140/pjm.2020.305.43
- Abbey Bourdon and Pete L. Clark, Torsion points and isogenies on CM elliptic curves, J. Lond. Math. Soc. (2) 102 (2020), no. 2, 580â622. MR 4171427, DOI 10.1112/jlms.12329
- Abbey Bourdon, Pete L. Clark, and Paul Pollack, Anatomy of torsion in the CM case, Math. Z. 285 (2017), no. 3-4, 795â820. MR 3623731, DOI 10.1007/s00209-016-1727-5
- Abbey Bourdon, Pete L. Clark, and James Stankewicz, Torsion points on CM elliptic curves over real number fields, Trans. Amer. Math. Soc. 369 (2017), no. 12, 8457â8496. MR 3710632, DOI 10.1090/tran/6905
- Abbey Bourdon and Paul Pollack, Torsion subgroups of CM elliptic curves over odd degree number fields, Int. Math. Res. Not. IMRN 16 (2017), 4923â4961. MR 3687120, DOI 10.1093/imrn/rnw163
- Pete L. Clark, Patrick Corn, Alex Rice, and James Stankewicz, Computation on elliptic curves with complex multiplication, LMS J. Comput. Math. 17 (2014), no. 1, 509â535. MR 3356044, DOI 10.1112/S1461157014000072
- Pete L. Clark, Tyler Genao, Paul Pollack, and Frederick Saia, The least degree of a CM point on a modular curve, J. Lond. Math. Soc. (2) 105 (2022), no. 2, 825â883. MR 4400938, DOI 10.1112/jlms.12518
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- David A. Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322
- J. E. Cremona and Filip Najman, $\Bbb Q$-curves over odd degree number fields, Res. Number Theory 7 (2021), no. 4, Paper No. 62, 30. MR 4314224, DOI 10.1007/s40993-021-00270-0
- Maarten Derickx, Anastassia Etropolski, Mark van Hoeij, Jackson S. Morrow, and David Zureick-Brown, Sporadic cubic torsion, Algebra Number Theory 15 (2021), no. 7, 1837â1864. MR 4333666, DOI 10.2140/ant.2021.15.1837
- Enrique GonzĂĄlez-JimĂ©nez, Complete classification of the torsion structures of rational elliptic curves over quintic number fields, J. Algebra 478 (2017), 484â505. MR 3621686, DOI 10.1016/j.jalgebra.2017.01.012
- Enrique GonzĂĄlez-JimĂ©nez and Filip Najman, Growth of torsion groups of elliptic curves upon base change, Math. Comp. 89 (2020), no. 323, 1457â1485. MR 4063324, DOI 10.1090/mcom/3478
- Tomislav GuĆŸviÄ, Torsion of elliptic curves with rational $j$-invariant defined over number fields of prime degree, Proc. Amer. Math. Soc. 149 (2021), no. 8, 3261â3275. MR 4273133, DOI 10.1090/proc/15500
- Tomislav GuĆŸviÄ and Bidisha Roy, Torsion subgroups of rational Mordell curves over some families of number fields, An. ĆtiinĆŁ. Univ. âOvidiusâ ConstanĆŁa Ser. Mat. 30 (2022), no. 2, 125â132. MR 4433180
- H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, No. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR 424730
- Hans Heilbronn, On the class-number in imaginary quadratic fields, Q. J. Math. os-5 (1934), no. 1, 150â160.
- S. Kamienny, Torsion points on elliptic curves over all quadratic fields, Duke Math. J. 53 (1986), no. 1, 157â162. MR 835802, DOI 10.1215/S0012-7094-86-05310-X
- S. Kamienny, Torsion points on elliptic curves and $q$-coefficients of modular forms, Invent. Math. 109 (1992), no. 2, 221â229. MR 1172689, DOI 10.1007/BF01232025
- M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125â149. MR 931956, DOI 10.1017/S0027763000002816
- B. Mazur, Modular curves and the Eisenstein ideal, Inst. Hautes Ătudes Sci. Publ. Math. 47 (1977), 33â186 (1978). With an appendix by Mazur and M. Rapoport. MR 488287, DOI 10.1007/BF02684339
- LoĂŻc Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 (1996), no. 1-3, 437â449 (French). MR 1369424, DOI 10.1007/s002220050059
- Louis Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees., Proc. Camb. Philos. Soc. 21 (1922), 179â192.
- Filip Najman, Torsion of rational elliptic curves over cubic fields and sporadic points on $X_1(n)$, Math. Res. Lett. 23 (2016), no. 1, 245â272. MR 3512885, DOI 10.4310/MRL.2016.v23.n1.a12
- Loren D. Olson, Points of finite order on elliptic curves with complex multiplication, Manuscripta Math. 14 (1974), 195â205. MR 352104, DOI 10.1007/BF01171442
- James L. Parish, Rational torsion in complex-multiplication elliptic curves, J. Number Theory 33 (1989), no. 2, 257â265. MR 1034205, DOI 10.1016/0022-314X(89)90012-7
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, vol. 11, Princeton University Press, Princeton, NJ, 1994. Reprint of the 1971 original; KanĂŽ Memorial Lectures, 1. MR 1291394
- Alice Silverberg, Torsion points on abelian varieties of CM-type, Compositio Math. 68 (1988), no. 3, 241â249. MR 971328
- A. Silverberg, Points of finite order on abelian varieties, $p$-adic methods in number theory and algebraic geometry, Contemp. Math., vol. 133, Amer. Math. Soc., Providence, RI, 1992, pp. 175â193. MR 1183978, DOI 10.1090/conm/133/1183978
- Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368, DOI 10.1007/978-1-4612-0851-8
- AndrĂ© Weil, LâarithmĂ©tique sur les courbes algĂ©briques, Acta Math. 52 (1929), no. 1, 281â315 (French). MR 1555278, DOI 10.1007/BF02547409
Bibliographic Information
- Abbey Bourdon
- Affiliation: Department of Mathematics, Wake Forest University, Winston-Salem, North Carolina 27109
- MR Author ID: 1106479
- Email: bourdoam@wfu.edu
- Holly Paige Chaos
- Affiliation: Department of Mathematics & Statistics, The University of Vermont, Burlington, Vermont 05405
- MR Author ID: 1358467
- Email: Holly-Paige.Chaos@uvm.edu
- Received by editor(s): October 25, 2021
- Received by editor(s) in revised form: April 4, 2022, and June 2, 2022
- Published electronically: December 15, 2022
- Additional Notes: The first author was partially supported by an A.J. Sterge Faculty Fellowship and NSF grant DMS-2137659.
- Communicated by: Rachel Pries
- © Copyright 2022 by the authors
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1001-1015
- MSC (2020): Primary 11G05, 11G15
- DOI: https://doi.org/10.1090/proc/16170
- MathSciNet review: 4531634