Power-law Lévy processes, power-law vector random fields, and some extensions
HTML articles powered by AMS MathViewer
- by Chunsheng Ma;
- Proc. Amer. Math. Soc. 151 (2023), 1311-1323
- DOI: https://doi.org/10.1090/proc/16176
- Published electronically: December 9, 2022
- HTML | PDF | Request permission
Abstract:
This paper introduces a power-law subordinator and a power-law Lévy process whose Laplace transform and characteristic function are simply made up of power functions or the ratio of power functions, respectively, and proposes a power-law vector random field whose finite-dimensional characteristic functions consist merely of a power function or the ratio of two power functions. They may or may not have first-order moment, and contain Linnik, variance Gamma, and Laplace Lévy processes (vector random fields) as special cases. For a second-order power-law vector random field, it is fully characterized by its mean vector function and its covariance matrix function, just like a Gaussian vector random field. An important feature of the power-law Lévy processes (random fields) is that they can be used as the building blocks to construct other Lévy processes (random fields), such as hyperbolic secant, cosine ratio, and sine ratio Lévy processes (random fields).References
- I. Artico, I. Smolyarenko, V. Vinciotti, and E. C. Wit, How rare are power-law networks really?, Proc. A. 476 (2020), no. 2241, 20190742, 17. MR 4172560, DOI 10.1098/rspa.2019.0742
- Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman, Power-law distributions in empirical data, SIAM Rev. 51 (2009), no. 4, 661–703. MR 2563829, DOI 10.1137/070710111
- Pedro Carpena, Pedro A. Bernaola-Galván, Manuel Gómez-Extremera, and Ana V. Coronado, Transforming Gaussian correlations. Applications to generating long-range power-law correlated time series with arbitrary distribution, Chaos 30 (2020), no. 8, 083140, 20. MR 4137556, DOI 10.1063/5.0013986
- W. Ectors, B. Kochan, D. Janssens, T. Bellemans, and G. Wets, Zipf’s power law in activity schedules and the effect of aggregation, Procedia Comp. Sci. 109 (2017), 225–232.
- M. Fernández-Martínez, M. A. Sánchez-Granero, M. P. Casado Belmonte, and J. E. Trinidad Segovia, A note on power-law cross-correlated processes, Chaos Solitons Fractals 138 (2020), 109914, 9. MR 4104870, DOI 10.1016/j.chaos.2020.109914
- X. Gabaix, Power laws in economics: an introduction, J. Econ. Persp. 30 (2016), 185–205.
- X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, A theory of power-law distributions in financial market fluctuations, Nature 423 (2003), 267–270.
- Shilong Gao, Nunan Gao, Bixia Kan, and Huiqi Wang, Stochastic resonance in coupled star-networks with power-law heterogeneity, Phys. A 580 (2021), Paper No. 126155, 12. MR 4268781, DOI 10.1016/j.physa.2021.126155
- Atin Gayen and M. Ashok Kumar, Projection theorems and estimating equations for power-law models, J. Multivariate Anal. 184 (2021), Paper No. 104734, 21. MR 4226410, DOI 10.1016/j.jmva.2021.104734
- H. van Haeringen and L. P. Kok, Table errratum: A table of series and products [Prentice-Hall, Englewood Cliffs, N.J., 1975] by E. R. Hansen, Math. Comp. 47 (1986), no. 176, 767. MR 856718, DOI 10.1090/S0025-5718-1986-0856718-0
- Steel T. Huang and Stamatis Cambanis, Spherically invariant processes: their nonlinear structure, discrimination, and estimation, J. Multivariate Anal. 9 (1979), no. 1, 59–83. MR 530640, DOI 10.1016/0047-259X(79)90067-8
- R. Kazakevičius and J. Ruseckas, Power law statistics in the velocity fluctuations of Brownian particle in inhomogeneous media and driven by colored noise, J. Stat. Mech. Theory Exp. 2 (2015), P02021, 20. MR 3320086, DOI 10.1088/1742-5468/2015/02/p02021
- V. Korolev, A. Gorshenin, and A. Zeifman, On mixture representations for the generalized Linnik distribution and their applications in limit theorems, J. Math. Sci. (N.Y.) 246 (2020), no. 4, 503–518. MR 4134320, DOI 10.1007/s10958-020-04755-8
- Samuel Kotz, Tomasz J. Kozubowski, and Krzysztof Podgórski, The Laplace distribution and generalizations, Birkhäuser Boston, Inc., Boston, MA, 2001. A revisit with applications to communications, economics, engineering, and finance. MR 1935481, DOI 10.1007/978-1-4612-0173-1
- A. Kumar, A. Maheshwari, and A. Wyłomańska, Linnik Lévy process and some extensions, Phys. A 529 (2019), 121539, 15. MR 3958567, DOI 10.1016/j.physa.2019.121539
- Jeonghwa Lee, Generalized Bernoulli process with long-range dependence and fractional binomial distribution, Depend. Model. 9 (2021), no. 1, 1–12. MR 4223846, DOI 10.1515/demo-2021-0100
- S. C. Lim and L. P. Teo, Generalized Whittle-Matérn random field as a model of correlated fluctuations, J. Phys. A 42 (2009), no. 10, 105202, 21. MR 2485858, DOI 10.1088/1751-8113/42/10/105202
- Chunsheng Ma, Vector random fields with second-order moments or second-order increments, Stoch. Anal. Appl. 29 (2011), no. 2, 197–215. MR 2774237, DOI 10.1080/07362994.2011.532039
- Chunsheng Ma, Student’s $t$ vector random fields with power-law and log-law decaying direct and cross covariances, Stoch. Anal. Appl. 31 (2013), no. 1, 167–182. MR 3007889, DOI 10.1080/07362994.2013.741401
- Chunsheng Ma, Hyperbolic cosine ratio and hyperbolic sine ratio random fields, Statist. Probab. Lett. 179 (2021), Paper No. 109212, 10. MR 4299863, DOI 10.1016/j.spl.2021.109212
- D. B. Madan and E. Seneta, The variance gamma (V.G.) model for share market returns, J. Business 63 (1990), 511–524.
- Tushar Mitra, Tomal Hossain, Santo Banerjee, and Md. Kamrul Hassan, Similarity and self-similarity in random walk with fixed, random and shrinking steps, Chaos Solitons Fractals 145 (2021), Paper No. 110790, 8. MR 4221507, DOI 10.1016/j.chaos.2021.110790
- Géza Ódor, Nonuniversal power-law dynamics of susceptible infected recovered models on hierarchical modular networks, Phys. Rev. E 103 (2021), no. 6, Paper No. 062112, 9. MR 4289979, DOI 10.1103/physreve.103.062112
- Oleksii Omelchenko and Andrei A. Bulatov, Satisfiability threshold for power law random 2-SAT in configuration model, Theoret. Comput. Sci. 888 (2021), 70–94. MR 4316758, DOI 10.1016/j.tcs.2021.07.028
- Anthony G. Pakes, Mixture representations for symmetric generalized Linnik laws, Statist. Probab. Lett. 37 (1998), no. 3, 213–221. MR 1614942, DOI 10.1016/S0167-7152(97)00119-3
- Stefano Polizzi, Francisco-José Pérez-Reche, Alain Arneodo, and Françoise Argoul, Power-law and log-normal avalanche size statistics in random growth processes, Phys. Rev. E 104 (2021), no. 5, Paper No. L052101, 5. MR 4349856, DOI 10.1103/physreve.104.l052101
- Jim Pitman and Marc Yor, Infinitely divisible laws associated with hyperbolic functions, Canad. J. Math. 55 (2003), no. 2, 292–330. MR 1969794, DOI 10.4153/CJM-2003-014-x
- Faustino Prieto and José María Sarabia, A generalization of the power law distribution with nonlinear exponent, Commun. Nonlinear Sci. Numer. Simul. 42 (2017), 215–228. MR 3534933, DOI 10.1016/j.cnsns.2016.06.004
- Arthur Matsuo Yamashita Rios de Sousa, Hideki Takayasu, Didier Sornette, and Misako Takayasu, Sigma-pi structure with Bernoulli random variables: power-law bounds for probability distributions and growth models with interdependent entities, Entropy 23 (2021), no. 2, Paper No. 241, 18. MR 4224611, DOI 10.3390/e23020241
- Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999. Translated from the 1990 Japanese original; Revised by the author. MR 1739520
- Thomas Vojta and Alex Warhover, Probability density of fractional Brownian motion and the fractional Langevin equation with absorbing walls, J. Stat. Mech. Theory Exp. 3 (2021), Paper No. 033215, 27. MR 4269107, DOI 10.1088/1742-5468/abe700
- Fangfang Wang and Chunsheng Ma, Peakedness and convex ordering for elliptically contoured random fields, J. Statist. Plann. Inference 197 (2018), 21–34. MR 3799021, DOI 10.1016/j.jspi.2017.12.001
- Yue Wang and Jiulin Du, The collision frequencies in the plasmas with the power-law $q$-distributions in nonextensive statistics, Phys. A 566 (2021), Paper No. 125623, 15. MR 4192307, DOI 10.1016/j.physa.2020.125623
- K. Yao, Spherically invariant random processes: theory and applications, Communications, Information and Network Security, V. K. Bhargava, H. V. Poor, V. Tarokh, and S. Yoon (Eds.), Springer, New York, 2003, pp. 315–332.
Bibliographic Information
- Chunsheng Ma
- Affiliation: Department of Mathematics, Statistics, and Physics, Wichita State University, Wichita, Kansas 67260-0033
- MR Author ID: 319247
- ORCID: 0000-0001-6557-6391
- Email: chunsheng.ma@wichita.edu
- Received by editor(s): November 26, 2021
- Received by editor(s) in revised form: June 8, 2022
- Published electronically: December 9, 2022
- Communicated by: Qi-Man Shao
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1311-1323
- MSC (2020): Primary 60G51, 60G60, 60E07
- DOI: https://doi.org/10.1090/proc/16176
- MathSciNet review: 4531657