Obstructions to countable saturation in corona algebras
HTML articles powered by AMS MathViewer
- by Ilijas Farah and Alessandro Vignati;
- Proc. Amer. Math. Soc. 151 (2023), 1285-1300
- DOI: https://doi.org/10.1090/proc/16190
- Published electronically: December 21, 2022
- HTML | PDF | Request permission
Abstract:
We study the extent of countable saturation for coronas of abelian $\mathrm {C}^{*}$-algebras. In particular, we show that the corona algebra of $C_0(\mathbb {R}^n)$ is countably saturated if and only if $n=1$.References
- Charles A. Akemann, Gert K. Pedersen, and Jun Tomiyama, Multipliers of $C^*$-algebras, J. Functional Analysis 13 (1973), 277–301. MR 470685, DOI 10.1016/0022-1236(73)90036-0
- Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov, Model theory for metric structures, Model theory with applications to algebra and analysis. Vol. 2, London Math. Soc. Lecture Note Ser., vol. 350, Cambridge Univ. Press, Cambridge, 2008, pp. 315–427. MR 2436146, DOI 10.1017/CBO9780511735219.011
- Bruce Blackadar, $K$-theory for operator algebras, 2nd ed., Mathematical Sciences Research Institute Publications, vol. 5, Cambridge University Press, Cambridge, 1998. MR 1656031
- B. Blackadar, Operator algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006. Theory of $C^*$-algebras and von Neumann algebras; Operator Algebras and Non-commutative Geometry, III. MR 2188261, DOI 10.1007/3-540-28517-2
- Samuel Coskey and Ilijas Farah, Automorphisms of corona algebras, and group cohomology, Trans. Amer. Math. Soc. 366 (2014), no. 7, 3611–3630. MR 3192609, DOI 10.1090/S0002-9947-2014-06146-1
- Christopher J. Eagle and Alessandro Vignati, Saturation and elementary equivalence of $C^*$-algebras, J. Funct. Anal. 269 (2015), no. 8, 2631–2664. MR 3390013, DOI 10.1016/j.jfa.2015.04.013
- Christopher James Eagle, Ilijas Farah, Eberhard Kirchberg, and Alessandro Vignati, Quantifier elimination in $\textrm {C}^*$-algebras, Int. Math. Res. Not. IMRN 24 (2017), 7580–7606. MR 3801427, DOI 10.1093/imrn/rnw236
- D. Enders and T. Shulman, Almost commuting matrices, cohomology, and dimension, Preprint, arXiv:1902.10451, 2019.
- Ilijas Farah, A new bicommutant theorem, Pacific J. Math. 288 (2017), no. 1, 69–85. MR 3667764, DOI 10.2140/pjm.2017.288.69
- Ilijas Farah, Combinatorial set theory of C*-algebras, Springer Monographs in Mathematics, Springer, Cham, [2019] ©2019. MR 3971570, DOI 10.1007/978-3-030-27093-3
- I. Farah, Between ultrapowers and asymptotic sequence algebras, JEMS, to appear.
- I. Farah, S. Ghasemi, A. Vaccaro, and A. Vignati, Corona rigidity, Preprint, arXiv:2201.11618, 2022.
- Ilijas Farah and Bradd Hart, Countable saturation of corona algebras, C. R. Math. Acad. Sci. Soc. R. Can. 35 (2013), no. 2, 35–56 (English, with English and French summaries). MR 3114457
- Ilijas Farah, Bradd Hart, Martino Lupini, Leonel Robert, Aaron Tikuisis, Alessandro Vignati, and Wilhelm Winter, Model theory of $\rm C^*$-algebras, Mem. Amer. Math. Soc. 271 (2021), no. 1324, viii+127. MR 4279915, DOI 10.1090/memo/1324
- Ilijas Farah, Bradd Hart, and David Sherman, Model theory of operator algebras II: model theory, Israel J. Math. 201 (2014), no. 1, 477–505. MR 3265292, DOI 10.1007/s11856-014-1046-7
- Ilijas Farah and Ilan Hirshberg, The Calkin algebra is not countably homogeneous, Proc. Amer. Math. Soc. 144 (2016), no. 12, 5351–5357. MR 3556277, DOI 10.1090/proc/13137
- Ilijas Farah and Saharon Shelah, Rigidity of continuous quotients, J. Inst. Math. Jussieu 15 (2016), no. 1, 1–28. MR 3427592, DOI 10.1017/S1474748014000218
- Saeed Ghasemi, Isomorphisms of quotients of FDD-algebras, Israel J. Math. 209 (2015), no. 2, 825–854. MR 3430261, DOI 10.1007/s11856-015-1238-9
- Saeed Ghasemi, Reduced products of metric structures: a metric Feferman-Vaught theorem, J. Symb. Log. 81 (2016), no. 3, 856–875. MR 3569108, DOI 10.1017/jsl.2016.20
- Saeed Ghasemi and Piotr Koszmider, An extension of compact operators by compact operators with no nontrivial multipliers, J. Noncommut. Geom. 12 (2018), no. 4, 1503–1529. MR 3896233, DOI 10.4171/JNCG/316
- Isaac Goldbring and Thomas Sinclair, On Kirchberg’s embedding problem, J. Funct. Anal. 269 (2015), no. 1, 155–198. MR 3345606, DOI 10.1016/j.jfa.2015.02.016
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Eberhard Kirchberg, Central sequences in $C^*$-algebras and strongly purely infinite algebras, Operator Algebras: The Abel Symposium 2004, Abel Symp., vol. 1, Springer, Berlin, 2006, pp. 175–231. MR 2265050, DOI 10.1007/978-3-540-34197-0_{1}0
- Terry A. Loring, Lifting solutions to perturbing problems in $C^*$-algebras, Fields Institute Monographs, vol. 8, American Mathematical Society, Providence, RI, 1997. MR 1420863, DOI 10.1090/fim/008
- Paul McKenney and Alessandro Vignati, Forcing axioms and coronas of $\mathrm {C}^*$-algebras, J. Math. Log. 21 (2021), no. 2, Paper No. 2150006, 73. MR 4290495, DOI 10.1142/S0219061321500069
- N. Christopher Phillips and Nik Weaver, The Calkin algebra has outer automorphisms, Duke Math. J. 139 (2007), no. 1, 185–202. MR 2322680, DOI 10.1215/S0012-7094-07-13915-2
- Shaloub Razak, On the classification of simple stably projectionless $C^*$-algebras, Canad. J. Math. 54 (2002), no. 1, 138–224. MR 1880962, DOI 10.4153/CJM-2002-006-7
- Shôichirô Sakai, Derivations of simple $C^{\ast }$-algebras. III, Tohoku Math. J. (2) 23 (1971), 559–564. MR 318902, DOI 10.2748/tmj/1178242600
- Adam P. W. Sørensen and Hannes Thiel, A characterization of semiprojectivity for commutative $C^\ast$-algebras, Proc. Lond. Math. Soc. (3) 105 (2012), no. 5, 1021–1046. MR 2997045, DOI 10.1112/plms/pdr051
- Andrea Vaccaro, Obstructions to lifting abelian subalgebras of corona algebras, Pacific J. Math. 302 (2019), no. 1, 293–307. MR 4028774, DOI 10.2140/pjm.2019.302.293
- Jørgen Vesterstrøm, On the homomorphic image of the center of a $C^{\ast }$-algebra, Math. Scand. 29 (1971), 134–136. MR 306933, DOI 10.7146/math.scand.a-11040
- Alessandro Vignati, Nontrivial homeomorphisms of Čech-Stone remainders, Münster J. Math. 10 (2017), no. 1, 189–200. MR 3624107, DOI 10.17879/33249446858
- Alessandro Vignati, Rigidity conjectures for continuous quotients, Ann. Sci. Éc. Norm. Supér. (4) 55 (2022), no. 6, 1687–1738 (English, with English and French summaries). MR 4517685, DOI 10.24033/asens.2526
- Beatriz Zamora-Aviles, Gaps in the poset of projections in the Calkin algebra, Israel J. Math. 202 (2014), no. 1, 105–115. MR 3265315, DOI 10.1007/s11856-014-1057-4
Bibliographic Information
- Ilijas Farah
- Affiliation: Department of Mathematics and Statistics, York University, 4700 Keele Street, North York, Ontario, Canada, M3J 1P3; and Matematički Institut SANU, Kneza Mihaila 36, Belgrade 11001, Serbia (ORCiD: 0000-0001-7703-6931)
- MR Author ID: 350129
- ORCID: 0000-0001-7703-6931
- Email: ifarah@yorku.ca
- Alessandro Vignati
- Affiliation: Institut de Mathématiques de Jussieu (IMJ-PRG), Université Paris Cité, Bâtiment Sophie Germain, 8 Place Aurélie Nemours, 75013 Paris, France (ORCiD: 0000-0002-8675-3657).
- MR Author ID: 1122425
- ORCID: 0000-0002-8675-3657
- Email: vignati@imj-prg.fr
- Received by editor(s): March 17, 2022
- Received by editor(s) in revised form: June 8, 2022
- Published electronically: December 21, 2022
- Additional Notes: The first author was partially supported by NSERC. The second author was supported by an Emergence en Recherche grant from IdeX-Université Paris Cité and partially by the ANR project AGRUME (ANR-17-CE40-0026)
- Communicated by: Vera Fischer
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1285-1300
- MSC (2020): Primary 03C66; Secondary 03C50, 46L05
- DOI: https://doi.org/10.1090/proc/16190
- MathSciNet review: 4531655