Compactness and weak compactness of weighted composition operators on BMOA
HTML articles powered by AMS MathViewer
- by Jussi Laitila, Mikael Lindström and David Norrbo;
- Proc. Amer. Math. Soc. 151 (2023), 1195-1207
- DOI: https://doi.org/10.1090/proc/16203
- Published electronically: November 4, 2022
- HTML | PDF | Request permission
Abstract:
We show that a weighted composition operator ${W_{\psi ,\varphi }}$ is compact on BMOA precisely when it is unconditionally converging. As a direct consequence to this result we deduce that all weakly compact or completely continuous weighted composition operators on BMOA are compact. The proof of this result is based on a new simplified function-theoretic characterization of the compactness of weighted composition operators on BMOA.References
- Carl C. Cowen and Barbara D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397026
- Joseph Diestel, Sequences and series in Banach spaces, Graduate Texts in Mathematics, vol. 92, Springer-Verlag, New York, 1984. MR 737004, DOI 10.1007/978-1-4612-5200-9
- Ted Eklund, Pablo Galindo, Mikael Lindström, and Ilmari Nieminen, Norm, essential norm and weak compactness of weighted composition operators between dual Banach spaces of analytic functions, J. Math. Anal. Appl. 451 (2017), no. 1, 1–13. MR 3619224, DOI 10.1016/j.jmaa.2017.01.098
- Pablo Galindo, Jussi Laitila, and Mikael Lindström, Essential norm estimates for composition operators on $BMOA$, J. Funct. Anal. 265 (2013), no. 4, 629–643. MR 3062539, DOI 10.1016/j.jfa.2013.05.002
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Daniel Girela, Analytic functions of bounded mean oscillation, Complex function spaces (Mekrijärvi, 1999) Univ. Joensuu Dept. Math. Rep. Ser., vol. 4, Univ. Joensuu, Joensuu, 2001, pp. 61–170. MR 1820090
- P. Harmand, D. Werner, and W. Werner, $M$-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993. MR 1238713, DOI 10.1007/BFb0084355
- Jussi Laitila, Composition operators and vector-valued BMOA, Integral Equations Operator Theory 58 (2007), no. 4, 487–502. MR 2329132, DOI 10.1007/s00020-007-1503-3
- Jussi Laitila, Weighted composition operators on BMOA, Comput. Methods Funct. Theory 9 (2009), no. 1, 27–46. MR 2478261, DOI 10.1007/BF03321712
- Jussi Laitila, Pekka J. Nieminen, Eero Saksman, and Hans-Olav Tylli, Compact and weakly compact composition operators on BMOA, Complex Anal. Oper. Theory 7 (2013), no. 1, 163–181. MR 3010794, DOI 10.1007/s11785-011-0130-9
- Jussi Laitila and Mikael Lindström, The essential norm of a weighted composition operator on BMOA, Math. Z. 279 (2015), no. 1-2, 423–434. MR 3299861, DOI 10.1007/s00209-014-1375-6
- M. V. Leĭbov, Subspaces of the space VMO, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 46 (1986), 51–54 (Russian); English transl., J. Soviet Math. 48 (1990), no. 5, 536–538. MR 865789, DOI 10.1007/BF01095622
- Mikael Lindström, Santeri Miihkinen, and Pekka J. Nieminen, Rigidity of weighted composition operators on $H^p$, Ann. Acad. Sci. Fenn. Math. 45 (2020), no. 2, 825–828. MR 4112261, DOI 10.5186/aasfm.2020.4537
- Albrecht Pietsch, Operator ideals, North-Holland Mathematical Library, vol. 20, North-Holland Publishing Co., Amsterdam-New York, 1980. Translated from German by the author. MR 582655
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- Wayne Smith, Compactness of composition operators on BMOA, Proc. Amer. Math. Soc. 127 (1999), no. 9, 2715–2725. MR 1600145, DOI 10.1090/S0002-9939-99-04856-X
- Elias M. Stein and Rami Shakarchi, Real analysis, Princeton Lectures in Analysis, vol. 3, Princeton University Press, Princeton, NJ, 2005. Measure theory, integration, and Hilbert spaces. MR 2129625, DOI 10.1515/9781400835560
- Ingemar Wik, On John and Nirenberg’s theorem, Ark. Mat. 28 (1990), no. 1, 193–200. MR 1049651, DOI 10.1007/BF02387375
- Hasi Wulan, Compactness of composition operators on BMOA and VMOA, Sci. China Ser. A 50 (2007), no. 7, 997–1004. MR 2355871, DOI 10.1007/s11425-007-0061-0
- Hasi Wulan, Dechao Zheng, and Kehe Zhu, Compact composition operators on BMOA and the Bloch space, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3861–3868. MR 2529895, DOI 10.1090/S0002-9939-09-09961-4
- Ke He Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 139, Marcel Dekker, Inc., New York, 1990. MR 1074007
Bibliographic Information
- Jussi Laitila
- Affiliation: Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, FI-00014 Helsinki, Finland
- MR Author ID: 763267
- ORCID: 0000-0003-3732-8176
- Email: jlaitila@iki.fi
- Mikael Lindström
- Affiliation: Department of Mathematics, Åbo Akademi University. FI-20500 Åbo, Finland
- Email: mikael.lindstrom@abo.fi
- David Norrbo
- Affiliation: Department of Mathematics, Åbo Akademi University. FI-20500 Åbo, Finland
- MR Author ID: 1409482
- ORCID: 0000-0003-3198-6290
- Email: david.norrbo@abo.fi
- Received by editor(s): March 9, 2022
- Received by editor(s) in revised form: July 1, 2022
- Published electronically: November 4, 2022
- Additional Notes: The third author was financially supported by the Doctoral Network in Information Technologies and Mathematics at Åbo Akademi University.
- Communicated by: Javad Mashreghi
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1195-1207
- MSC (2010): Primary 47B33, 47B38
- DOI: https://doi.org/10.1090/proc/16203
- MathSciNet review: 4531648