On large $\ell _1$-sums of Lipschitz-free spaces and applications
HTML articles powered by AMS MathViewer
- by Leandro Candido and Héctor H. T. Guzmán;
- Proc. Amer. Math. Soc. 151 (2023), 1135-1145
- DOI: https://doi.org/10.1090/proc/16206
- Published electronically: December 21, 2022
- HTML | PDF | Request permission
Abstract:
We prove that the Lipschitz-free space over a Banach space $X$ of density $\kappa$, denoted by $\mathcal {F}(X)$, is linearly isomorphic to its $\ell _1$-sum $\left (\bigoplus _{\kappa }\mathcal {F}(X)\right )_{\ell _1}$. This provides an extension of a previous result from Kaufmann in the context of non-separable Banach spaces. Further, we obtain a complete classification of the spaces of real-valued Lipschitz functions that vanish at $0$ over a $\mathcal {L}_p$-space. More precisely, we establish that, for every $1\leq p\leq \infty$, if $X$ is a $\mathcal {L}_p$-space of density $\kappa$, then $\mathrm {Lip}_0(X)$ is either isomorphic to $\mathrm {Lip}_0(\ell _p(\kappa ))$ if $p<\infty$, or $\mathrm {Lip}_0(c_0(\kappa ))$ if $p=\infty$.References
- Fernando Albiac, José L. Ansorena, Marek Cúth, and Michal Doucha, Lipschitz free spaces isomorphic to their infinite sums and geometric applications, Trans. Amer. Math. Soc. 374 (2021), no. 10, 7281–7312. MR 4315605, DOI 10.1090/tran/8444
- Ramón J. Aliaga, Camille Noûs, Colin Petitjean, and Antonín Procházka, Compact reduction in Lipschitz-free spaces, Studia Math. 260 (2021), no. 3, 341–359. MR 4296732, DOI 10.4064/sm200925-18-1
- Leandro Candido, Marek Cúth, and Michal Doucha, Isomorphisms between spaces of Lipschitz functions, J. Funct. Anal. 277 (2019), no. 8, 2697–2727. MR 3990732, DOI 10.1016/j.jfa.2019.02.003
- Leandro Candido and Pedro L. Kaufmann, On the geometry of Banach spaces of the form $\mathrm {Lip}_0(C(K))$, Proc. Amer. Math. Soc. 149 (2021), no. 8, 3335–3345. MR 4273138, DOI 10.1090/proc/15420
- Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995. MR 1342297, DOI 10.1017/CBO9780511526138
- Yves Dutrieux and Valentin Ferenczi, The Lipschitz free Banach spaces of $C(K)$-spaces, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1039–1044. MR 2196036, DOI 10.1090/S0002-9939-05-08301-2
- Gilles Godefroy, A survey on Lipschitz-free Banach spaces, Comment. Math. 55 (2015), no. 2, 89–118. MR 3518958, DOI 10.14708/cm.v55i2.1104
- Petr Hájek and Matěj Novotný, Some remarks on the structure of Lipschitz-free spaces, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 2, 283–304. MR 3694004, DOI 10.36045/bbms/1503453711
- Neil Hindman and Dona Strauss, Algebra in the Stone-Čech compactification, De Gruyter Expositions in Mathematics, vol. 27, Walter de Gruyter & Co., Berlin, 1998. Theory and applications. MR 1642231, DOI 10.1515/9783110809220
- William B. Johnson, A complementary universal conjugate Banach space and its relation to the approximation problem, Israel J. Math. 13 (1972), 301–310 (1973). MR 326356, DOI 10.1007/BF02762804
- N. J. Kalton, Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), no. 2, 171–217. MR 2068975
- Pedro Levit Kaufmann, Products of Lipschitz-free spaces and applications, Studia Math. 226 (2015), no. 3, 213–227. MR 3356002, DOI 10.4064/sm226-3-2
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces, Lecture Notes in Mathematics, Vol. 338, Springer-Verlag, Berlin-New York, 1973. MR 415253
- Assaf Naor and Gideon Schechtman, Planar earthmover is not in $L_1$, SIAM J. Comput. 37 (2007), no. 3, 804–826. MR 2341917, DOI 10.1137/05064206X
- A. Pełczyński and H. P. Rosenthal, Localization techniques in $L^{p}$ spaces, Studia Math. 52 (1974/75), 263–289. MR 361729
- Zbigniew Semadeni, Banach spaces of continuous functions. Vol. I, Monografie Matematyczne [Mathematical Monographs], Tom 55, PWN—Polish Scientific Publishers, Warsaw, 1971. MR 296671
- Nik Weaver, Lipschitz algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. MR 1832645, DOI 10.1142/4100
Bibliographic Information
- Leandro Candido
- Affiliation: Departamento de Matemática, Universidade Federal de São Paulo - UNIFESP, Instituto de Ciência e Tecnologia, São José dos Campos - SP, Brasil
- MR Author ID: 988174
- ORCID: 0000-0002-6429-3899
- Email: leandro.candido@unifesp.br
- Héctor H. T. Guzmán
- Affiliation: Departamento de Matemática, Universidade Federal de São Paulo - UNIFESP, Instituto de Ciência e Tecnologia, São José dos Campos - SP, Brasil
- ORCID: 0000-0002-3407-4935
- Email: torres.hector@unifesp.br
- Received by editor(s): February 20, 2022
- Received by editor(s) in revised form: February 26, 2022, and June 7, 2022
- Published electronically: December 21, 2022
- Additional Notes: The first author was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP No. 2016/25574-8. The second author was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES.
- Communicated by: Stephen Dilworth
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1135-1145
- MSC (2020): Primary 46E15, 46B03; Secondary 46B26
- DOI: https://doi.org/10.1090/proc/16206
- MathSciNet review: 4531643