Almost automorphic solutions of second-order equations involving time scales with boundary conditions
HTML articles powered by AMS MathViewer
- by Mario Choquehuanca, Jaqueline G. Mesquita and Aldo Pereira;
- Proc. Amer. Math. Soc. 151 (2023), 1055-1070
- DOI: https://doi.org/10.1090/proc/16211
- Published electronically: December 15, 2022
- HTML | PDF | Request permission
Abstract:
In this article, we investigate the existence and uniqueness of solutions of linear and semilinear second–order equations involving time scales. To obtain such results, we make use of exponential dichotomy and fixed point results. Also, we present some examples and applications to illustrate our main results.References
- Daniela Araya, Rodrigo Castro, and Carlos Lizama, Almost automorphic solutions of difference equations, Adv. Difference Equ. , posted on (2009), Art. ID 591380, 15. MR 2524583, DOI 10.1155/2009/591380
- I. D. Berg, On functions with almost periodic or almost automorphic first differences, J. Math. Mech. 19 (1969/70), 239–245. MR 248487, DOI 10.1512/iumj.1970.19.19022
- S. Bochner, Continuous mappings of almost automorphic and almost periodic functions, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 907–910. MR 168997, DOI 10.1073/pnas.52.4.907
- Martin Bohner and Allan Peterson, Dynamic equations on time scales, Birkhäuser Boston, Inc., Boston, MA, 2001. An introduction with applications. MR 1843232, DOI 10.1007/978-1-4612-0201-1
- M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
- Dariusz Bugajewski and Gaston M. N’Guérékata, On the topological structure of almost automorphic and asymptotically almost automorphic solutions of differential and integral equations in abstract spaces, Nonlinear Anal. 59 (2004), no. 8, 1333–1345. MR 2101648, DOI 10.1016/j.na.2003.08.012
- Tomás Caraballo and David Cheban, Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard’s separation condition. I, J. Differential Equations 246 (2009), no. 1, 108–128. MR 2467017, DOI 10.1016/j.jde.2008.04.001
- Tomás Caraballo and David Cheban, Almost periodic and almost automorphic solutions of linear differential/difference equations without Favard’s separation condition. II, J. Differential Equations 246 (2009), no. 3, 1164–1186. MR 2474590, DOI 10.1016/j.jde.2008.07.025
- Tomás Caraballo and David Cheban, Levitan/Bohr almost periodic and almost automorphic solutions of second order monotone differential equations, J. Differential Equations 251 (2011), no. 3, 708–727. MR 2802030, DOI 10.1016/j.jde.2011.04.021
- Samuel Castillo and Manuel Pinto, Asymptotic behavior of functional dynamic equations in time scale, Dynam. Systems Appl. 19 (2010), no. 1, 165–177. MR 2663352
- Jimin Zhang, Meng Fan, and Huaiping Zhu, Existence and roughness of exponential dichotomies of linear dynamic equations on time scales, Comput. Math. Appl. 59 (2010), no. 8, 2658–2675. MR 2607970, DOI 10.1016/j.camwa.2010.01.035
- A. M. Fink, Almost automorphic and almost periodic solutions which minimize functionals, Tohoku Math. J. (2) 20 (1968), 323–332. MR 239192, DOI 10.2748/tmj/1178243139
- A. M. Fink, Extensions of almost automorphic sequences, J. Math. Anal. Appl. 27 (1969), 519–523. MR 244703, DOI 10.1016/0022-247X(69)90132-2
- Sorin G. Gal and Gaston M. N’Guérékata, Almost automorphic fuzzy-number-valued functions, J. Fuzzy Math. 13 (2005), no. 1, 185–208. MR 2125760
- Ciprian S. Gal, Sorin G. Gal, and Gaston M. N’Guérékata, Almost automorphic functions in Fréchet spaces and applications to differential equations, Semigroup Forum 71 (2005), no. 2, 201–230. MR 2184054, DOI 10.1007/s00233-005-0508-y
- Ciprian G. Gal, Sorin G. Gal, and Gaston M. N’Guérékata, Almost automorphic functions with values in $p$-Fréchet spaces, Electron. J. Differential Equations (2008), No. 21, 18. MR 2383385
- Gaston M. N’Guerekata, Almost automorphic and almost periodic functions in abstract spaces, Kluwer Academic/Plenum Publishers, New York, 2001. MR 1880351, DOI 10.1007/978-1-4757-4482-8
- Carlos Lizama and Jaqueline G. Mesquita, Almost automorphic solutions of dynamic equations on time scales, J. Funct. Anal. 265 (2013), no. 10, 2267–2311. MR 3091815, DOI 10.1016/j.jfa.2013.06.013
- Carlos Lizama and Jaqueline G. Mesquita, Asymptotically almost automorphic solutions of dynamic equations on time scales, Topol. Methods Nonlinear Anal. 54 (2019), no. 1, 59–80. MR 4018269, DOI 10.12775/tmna.2019.024
- Carlos Lizama and Jaqueline G. Mesquita, Almost automorphic solutions of non-autonomous difference equations, J. Math. Anal. Appl. 407 (2013), no. 2, 339–349. MR 3071105, DOI 10.1016/j.jmaa.2013.05.032
- Carlos Lizama, Jaqueline G. Mesquita, Rodrigo Ponce, and Eduard Toon, Almost automorphic solutions of Volterra equations on time scales, Differential Integral Equations 30 (2017), no. 9-10, 667–694. MR 3656483
- Aril Milcé, Asymptotically almost automorphic solutions for some integro-dynamic equations with nonlocal initial conditions on time scales, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 23 (2016), no. 1, 27–46. MR 3453289
- Nguyen Van Minh, Toshiki Naito, and Gaston Nguerekata, A spectral countability condition for almost automorphy of solutions of differential equations, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3257–3266. MR 2231910, DOI 10.1090/S0002-9939-06-08528-5
- William Austin Veech, ALMOST AUTOMORPHIC FUNCTIONS, ProQuest LLC, Ann Arbor, MI, 1963. Thesis (Ph.D.)–Princeton University. MR 2614042
- W. A. Veech, Almost automorphic functions, Proc. Nat. Acad. Sci. U.S.A. 49 (1963), 462–464. MR 152830, DOI 10.1073/pnas.49.4.462
- W. A. Veech, Almost automorphic functions on groups, Amer. J. Math. 87 (1965), 719–751. MR 187014, DOI 10.2307/2373071
- Samuel Zaidman, Almost automorphic solutions of some abstract evolution equations, Istit. Lombardo Accad. Sci. Lett. Rend. A 110 (1976), no. 2, 578–588 (1977) (English, with Italian summary). MR 486901
- Samuel Zaidman, Existence of asymptotically almost-periodic and of almost-automorphic solutions for some classes of abstract differential equations, Ann. Sci. Math. Québec 13 (1989), no. 1, 79–88 (English, with French summary). MR 1006505
- M. Zaki, Almost automorphic solutions of certain abstract differential equations, Ann. Mat. Pura Appl. (4) 101 (1974), 91–114. MR 364805, DOI 10.1007/BF02417100
Bibliographic Information
- Mario Choquehuanca
- Affiliation: Department of Mathematics and Statistics, University of La Frontera, box 54-D Temuco, Chile
- MR Author ID: 1010435
- Email: mario.choquehuanca@ufrontera.cl
- Jaqueline G. Mesquita
- Affiliation: Departamento de Matemática, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte 70910-900, Brasília-DF, Brazil
- MR Author ID: 940198
- ORCID: 0000-0002-1255-9384
- Email: jgmesquita@unb.br
- Aldo Pereira
- Affiliation: Departamento de Matemáticas, Universidad de La Serena, Avenida Cisternas 1200, La Serena, Chile
- MR Author ID: 974945
- ORCID: 0000-0002-1553-9231
- Email: aldo.pereira@userena.cl
- Received by editor(s): January 28, 2022
- Published electronically: December 15, 2022
- Additional Notes: The first author was partially supported by DIUFRO (Universidad de La Frontera) under Grant DI17-0129 and the second author was partially supported by FAPDF grant 0193.001300/2016, CNPq 407952/2016-0 and FEMAT–Fundação de Estudos em Ciências Matemáticas Proc. 039/2017. The third author was supported by CONICYT grant #74180101.
- Communicated by: Mourad Ismail
- © Copyright 2022 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 151 (2023), 1055-1070
- MSC (2020): Primary 39A13, 34N05, 26E70
- DOI: https://doi.org/10.1090/proc/16211
- MathSciNet review: 4531638